首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unknotting or triple point cancelling number of a surface link F is the least number of 1-handles for F such that the 2-knot obtained from F by surgery along them is unknotted or pseudo-ribbon, respectively. These numbers have been often studied by knot groups and Alexander invariants. On the other hand, quandle colorings and quandle cocycle invariants of surface links were introduced and applied to other aspects, including non-invertibility and triple point numbers. In this paper, we give lower bounds of the unknotting or triple point cancelling numbers of surface links by using quandle colorings and quandle cocycle invariants.  相似文献   

2.
We propose a new method of generalizing classical link invariants for the case of virtual links. In particular, we have generalized the knot quandle, the knot fundamental group, the Alexander module, and the coloring invariants. The virtual Alexander module leads to a definition of VA-polynomial that has no analogue in the classical case (i.e. vanishes on classical links).  相似文献   

3.
Recently Stoimenow showed that for every knot K and any nN and u0?u(K) there is a prime knot Kn,uo which is n-equivalent to the knot K and has unknotting number u(Kn,uo) equal to u0. The similar result has been obtained for the 4-ball genus gs of a knot. Stoimenow also proved that any admissible value of the Tristram-Levine signature σξ can be realized by a knot with the given Vassiliev invariants of bounded order. In this paper, we show that for every knot K with genus g(K) and any nN and m?g(K) there exists a prime knot L which is n-equivalent to K and has genus g(L) equal to m.  相似文献   

4.
Bourgoin defined the notion of a twisted link which corresponds to a stable equivalence class of links in oriented thickenings. It is a generalization of a virtual link. Some invariants of virtual links are extended for twisted links including the knot group and the Jones polynomial. In this paper, we generalize a multivariable polynomial invariant of a virtual link to a twisted link. We also introduce a quandle of a twisted link.  相似文献   

5.
We prove that the lower bounds for Betti numbers of the rack, quandle and degeneracy cohomology given in Carter et al. (J. Pure Appl. Algebra, 157 (2001) 135) are in fact equalities. We compute as well the Betti numbers of the twisted cohomology introduced in Carter et al. (Twisted quandle cohomology theory and cocycle knot invariants, math. GT/0108051). We also give a group-theoretical interpretation of the second cohomology group for racks.  相似文献   

6.
Quandles with involutions that satisfy certain conditions, called good involutions, can be used to color non-orientable surface-knots. We use subgroups of signed permutation matrices to construct non-trivial good involutions on extensions of odd order dihedral quandles.For the smallest example of order 6 that is an extension of the three-element dihedral quandle R3, various symmetric quandle homology groups are computed, and applications to the minimal triple point number of surface-knots are given.  相似文献   

7.
Given a knot K in the 3-sphere, let QK be its fundamental quandle as introduced by Joyce. Its first homology group is easily seen to be . We prove that H2(QK)=0 if and only if K is trivial, and whenever K is non-trivial. An analogous result holds for links, thus characterizing trivial components.More detailed information can be derived from the conjugation quandle: let QKπ be the conjugacy class of a meridian in the knot group . We show that , where p is the number of prime summands in a connected sum decomposition of K.  相似文献   

8.
James Conant 《Topology》2004,43(1):119-156
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to our notion of grope cobordism. Thus our results can be viewed as a geometric interpretation of finite type invariants.The derived commutator series of a group also has a three-dimensional analogy, namely knots modulo symmetric grope cobordism. On one hand this theory maps onto the usual Vassiliev theory and on the other hand it maps onto the Cochran-Orr-Teichner filtration of the knot concordance group, via symmetric grope cobordism in 4-space. In particular, the graded theory contains information on finite type invariants (with degree h terms mapping to Vassiliev degree 2h), Blanchfield forms or S-equivalence at h=2, Casson-Gordon invariants at h=3, and for h=4 one finds the new von Neumann signatures of a knot.  相似文献   

9.
For a quandle X, the quandle space BX is defined, modifying the rack space of Fenn, Rourke and Sanderson (1995) [13], and the quandle homotopy invariant of links is defined in Z[π2(BX)], modifying the rack homotopy invariant of Fenn, Rourke and Sanderson (1995) [13]. It is known that the cocycle invariants introduced in Carter et al. (2005) [3], Carter et al. (2003) [5], Carter et al. (2001) [6] can be derived from the quandle homotopy invariant.In this paper, we show that, for a finite quandle X, π2(BX) is finitely generated, and that, for a connected finite quandle X, π2(BX) is finite. It follows that the space spanned by cocycle invariants for a finite quandle is finitely generated. Further, we calculate π2(BX) for some concrete quandles. From the calculation, all cocycle invariants for those quandles are concretely presented. Moreover, we show formulas of the quandle homotopy invariant for connected sum of knots and for the mirror image of links.  相似文献   

10.
The 2-twist spun trefoil is an example of a sphere that is knotted in 4-dimensional space. A proof is given in this paper that this sphere is distinct from the same sphere with its orientation reversed. Our proof is based on a state-sum invariant for knotted surfaces developed via a cohomology theory of racks and quandles (also known as distributive groupoids).

A quandle is a set with a binary operation -- the axioms of which model the Reidemeister moves in classical knot theory. Colorings of diagrams of knotted curves and surfaces by quandle elements, together with cocycles of quandles, are used to define state-sum invariants for knotted circles in -space and knotted surfaces in -space.

Cohomology groups of various quandles are computed herein and applied to the study of the state-sum invariants. Non-triviality of the invariants is proved for a variety of knots and links, and conversely, knot invariants are used to prove non-triviality of cohomology for a variety of quandles.

  相似文献   


11.
The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g ≥ 2 the order of this group is naturally bounded in terms of g due to a Riemann–Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.  相似文献   

12.
Greg Friedman 《Topology》2004,43(1):71-117
By considering a (not necessarily locally-flat) PL knot as the singular locus of a PL stratified pseudomanifold, we can use intersection homology theory to define intersection Alexander polynomials, a generalization of the classical Alexander polynomial invariants for smooth or PL locally-flat knots. We show that the intersection Alexander polynomials satisfy certain duality and normalization conditions analogous to those of ordinary Alexander polynomials, and we explore the relationships between the intersection Alexander polynomials and certain generalizations of the classical Alexander polynomials that are defined for non-locally-flat knots. We also investigate the relations between the intersection Alexander polynomials of a knot and the intersection and classical Alexander polynomials of the link knots around the singular strata. To facilitate some of these investigations, we introduce spectral sequences for the computation of the intersection homology of certain stratified bundles.  相似文献   

13.
We introduce and study so-called self-indexed graphs. These are (oriented) finite graphs endowed with a map from the set of edges to the set of vertices. Such graphs naturally arise from classical knot and link diagrams. In fact, the graphs resulting from link diagrams have an additional structure, an integral flow. We call a self-indexed graph with integral flow a comte. The analogy with links allows us to define transformations of comtes generalizing the Reidemeister moves on link diagrams. We show that many invariants of links can be generalized to comtes, most notably the linking number, the Alexander polynomials, the link group, etc. We also discuss finite type invariants and quandle cocycle invariants of comtes.

  相似文献   


14.
This article presents several new constructions of infinite families of smooth 4-manifolds with the property that any two manifolds in the same family are homeomorphic. While the construction gives strong evidence that any two of these manifolds of are not diffeomorphic, they cannot be distinguished by Seiberg-Witten invariants. Whether these manifolds are, or are not, diffeomorphic seems to be a very difficult question to answer. For one of these constructions, each member of the family is symplectic with the further property that each contains nullhomologous tori with the property that infinitely many log transformations on these tori yield nonsymplectic 4-manifolds. This is detected by calculations of Seiberg-Witten invariants. The surgery in question can be performed on any 4-manifold which contains as a codimension 0 submanifold a punctured surface bundle over a punctured surface and a nontrivial loop in the base which has trivial monodromy. A starting point for another class of examples in this paper is a family of examples which show that the Parshin-Arakelov theorem for holomorphic Lefschetz fibrations is false in the symplectic category. Such families are constructed by means of knot surgery on ellipitic surfaces. It is shown that for a fixed homeomorphism type X (of a simply connected elliptic surface) and a fixed integer g?3, there are infinitely many genus g Lefschetz fibrations on nondiffeomorphic 4-manifolds, all homeomorphic to X.  相似文献   

15.
The two operations of conjugation in a group, x?y=y-1xy and x?-1y=yxy-1 satisfy certain identities. A set with two operations satisfying these identities is called a quandle. The Wirtinger presentation of the knot group involves only relations of the form y-1xy=z and so may be construed as presenting a quandle rather than a group. This quandle, called the knot quandle, is not only an invariant of the knot, but in fact a classifying invariant of the knot.  相似文献   

16.
We initiate the study of classical knots through the homotopy class of the nth evaluation map of the knot, which is the induced map on the compactified n-point configuration space. Sending a knot to its nth evaluation map realizes the space of knots as a subspace of what we call the nth mapping space model for knots. We compute the homotopy types of the first three mapping space models, showing that the third model gives rise to an integer-valued invariant. We realize this invariant in two ways, in terms of collinearities of three or four points on the knot, and give some explicit computations. We show this invariant coincides with the second coefficient of the Conway polynomial, thus giving a new geometric definition of the simplest finite-type invariant. Finally, using this geometric definition, we give some new applications of this invariant relating to quadrisecants in the knot and to complexity of polygonal and polynomial realizations of a knot.  相似文献   

17.
We say a knot k in the 3-sphere S3 has PropertyIE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t2−5t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t2−5t+2 respectively.Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.  相似文献   

18.
19.
Michael Eisermann 《Topology》2004,43(5):1211-1229
This article examines the relationship between 3-manifold topology and knot invariants of finite type. We prove that in every Whitehead manifold there exist knots that cannot be distinguished by Vassiliev invariants. If, on the other hand, Vassiliev invariants distinguish knots in each homotopy sphere, then the Poincaré conjecture is true (i.e. every homotopy 3-sphere is homeomorphic to the standard 3-sphere).  相似文献   

20.
We introduce the concept of s-distance of an unstabilized Heegaard splitting. We prove if a 3-manifold admits an unstabilized genus g Heegaard splitting with s-distance m  , then surgery on some (m−1)(m1) components link may produce a 3-manifold which admits a stabilized genus g Heegaard splitting. We also give an alternative proof of the fundamental theorem of surgery theory, which states that every closed orientable 3-manifold is obtained by surgery on some link in 3-sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号