首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal image downscaling algorithms use a unique relationship between land surface temperature (LST) and vegetation indices (e.g. normalized difference vegetation index (NDVI)). The LST–NDVI correlation and regression parameters vary in different seasons depending on land-use practices. Such relationships are dynamic in humid subtropical regions due to inter-seasonal changes in biophysical parameters. The present study evaluates three downscaling algorithms, namely disaggregation of radiometric surface temperature (DisTrad), sharpening thermal imagery (TsHARP), and local model using seasonal (25 February 2010, 14 April 2010, and 26 October 2011) thermal images. The aggregated Landsat LST of 960 m resolution is downscaled to 480, 360, 240, and 120 m using DisTrad, TsHARP, and the local model and validated with aggregated Landsat LSTs of a similar resolution. The results illustrate that the seasonal variability of the LST–NDVI relationship affects the accuracy of the downscaling model. For example, the accuracy of all algorithms is higher for the growing seasons (February and October) unlike the harvesting season (April). The root mean square error of the downscaled LST increases from 480 to 120 m spatial resolution in all seasons. The models are least suitable in water body and dry-river bed sand areas. However, the downscaling accuracy is higher for NDVI > 0.3. The present study is useful to understand the applicability of the downscaling models in seasonally varied landscapes and different NDVI ranges.  相似文献   

2.
The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.  相似文献   

3.
Many application fields need land surface temperature (LST) with simultaneous high spatial and temporal resolution, which can be achieved through the disaggregation technique. Most published methods built an assumed scale-independent relationship between LST and predictor variables derived from coarse spatial resolution data. However, LST disaggregation in the heterogeneous areas, especially urban areas, is very difficult to achieve and there are few studies on it. In this article, we propose an adjusted stratified stepwise regression method for temperature disaggregation in urban areas. Landsat Enhanced Thematic Plus (ETM+) data from Shanghai, China, were used to construct remote-sensing indices that are related to LST variance and retrieve LST at 60 and 480 m spatial resolution, respectively. Different stepwise regression models at 480 m resolution were built for two stratified regions according to normalized difference vegetation index (NDVI) distribution, and then each independent variable at 60 m resolution was adjusted to calculate disaggregated LST by considering its relationship with the 480 m resolution image. By using LST retrieved directly from ETM+ band 6 at 60 m spatial resolution as the reference, the proposed method comprising resampling disaggregation, the thermal data sharpening model (TsHARP)/disaggregation procedure for radiometric surface temperature (DisTrad) technique, and the LST-principal component analysis (PCA) regression algorithm were verified and compared. The results show that the temperature distribution estimated using the proposed method is most consistent with that of the reference LST in this heterogeneous study area, and that the precision improves significantly, especially for the low vegetation fraction region.  相似文献   

4.
Remote sensing of urban heat islands (UHIs) has traditionally used the Normalized Difference Vegetation Index (NDVI) as the indicator of vegetation abundance to estimate the land surface temperature (LST)-vegetation relationship. This study investigates the applicability of vegetation fraction derived from a spectral mixture model as an alternative indicator of vegetation abundance. This is based on examination of a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Indianapolis City, IN, USA, acquired on June 22, 2002. The transformed ETM+ image was unmixed into three fraction images (green vegetation, dry soil, and shade) with a constrained least-square solution. These fraction images were then used for land cover classification based on a hybrid classification procedure that combined maximum likelihood and decision tree algorithms. Results demonstrate that LST possessed a slightly stronger negative correlation with the unmixed vegetation fraction than with NDVI for all land cover types across the spatial resolution (30 to 960 m). Correlations reached their strongest at the 120-m resolution, which is believed to be the operational scale of LST, NDVI, and vegetation fraction images. Fractal analysis of image texture shows that the complexity of these images increased initially with pixel aggregation and peaked around 120 m, but decreased with further aggregation. The spatial variability of texture in LST was positively correlated with those in NDVI and in vegetation fraction. The interplay between thermal and vegetation dynamics in the context of different land cover types leads to the variations in spectral radiance and texture in LST. These variations are also present in the other imagery, and are responsible for the spatial patterns of urban heat islands. It is suggested that the areal measure of vegetation abundance by unmixed vegetation fraction has a more direct correspondence with the radiative, thermal, and moisture properties of the Earth's surface that determine LST.  相似文献   

5.
This paper compares the normalized difference vegetation index (NDVI) and percent impervious surface as indicators of surface urban heat island effects in Landsat imagery by investigating the relationships between the land surface temperature (LST), percent impervious surface area (%ISA), and the NDVI. Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data were used to estimate the LST from four different seasons for the Twin Cities, Minnesota, metropolitan area. A map of percent impervious surface with a standard error of 7.95% was generated using a normalized spectral mixture analysis of July 2002 Landsat TM imagery. Our analysis indicates there is a strong linear relationship between LST and percent impervious surface for all seasons, whereas the relationship between LST and NDVI is much less strong and varies by season. This result suggests percent impervious surface provides a complementary metric to the traditionally applied NDVI for analyzing LST quantitatively over the seasons for surface urban heat island studies using thermal infrared remote sensing in an urbanized environment.  相似文献   

6.
Urbanization is taking place at an unprecedented rate around the world, particularly in China in the past few decades. One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). Understanding the effects of landscape pattern on UHI is crucial for improving the ecology and sustainability of cities. This study investigated how landscape composition and configuration would affect UHI in the Shanghai metropolitan region of China, based on the analysis of land surface temperature (LST) in relation to normalized difference vegetation index (NDVI), vegetation fraction (Fv), and percent impervious surface area (ISA). Two Landsat ETM+ images acquired on March 13 and July 2, 2001 were used to estimate LST, Fv, and percent ISA. Landscape metrics were calculated from a high spatial resolution (2.5 × 2.5 m) land-cover/land-use map. Our results have showed that, although there are significant variations in LST at a given fraction of vegetation or impervious surface on a per-pixel basis, NDVI, Fv, and percent ISA are all good predictors of LST on the regional scale. There is a strong negative linear relationship between LST and positive NDVI over the region. Similar but stronger negative linear relationship exists between LST and Fv. Urban vegetation could mitigate the surface UHI better in summer than in early spring. A strong positive relationship exists between mean LST and percent ISA. The residential land is the biggest contributor to UHI, followed by industrial land. Although industrial land has the highest LST, it has limited contribution to the overall surface UHI due to its small spatial extend in Shanghai. Among the residential land-uses, areas with low- to-middle-rise buildings and low vegetation cover have much high temperatures than areas with high-rise buildings or areas with high vegetation cover. A strong correlation between the mean LST and landscape metrics indicates that urban landscape configuration also influences the surface UHI. These findings are helpful for understanding urban ecology as well as land use planning to minimize the potential environmental impacts of urbanization.  相似文献   

7.
Energy balance parameters are very important in various applications such as energy global cycle, environment, climatic change monitoring, weather forecast, agriculture. The present study evaluates the influence of topographical conditions on the amount of downward shortwave radiation (SWD) of the surface, as well as the relation between surface Net radiation with biophysical characteristics and region’s land use’s. For this purpose, Landsat images, Digital Elevation Model (DEM), and a set of sample points have been used. To calculate the downward shortwave radiation and Net radiation fluxes, it has employed the mountainous SEBAL algorithm. Greenness, Brightness, Wetness, Normalization Difference Built-up Index (NDBI), Normalization Difference Vegetation Index (NDVI) and Albedo parameters considered as surface biophysical characteristics. Brightness, NDBI and Albedo information shows the percentage of impervious? surfaces while Greenness and NDVI information is related to vegetation percentage and Wetness information concerns water-related rates as well as the wetness of the soil, plant, and built-up lands. Statistical analysis has been used to study the relationship between different parameters. Results show that the slope is the most influential topographical parameters on the amount of SWD of the surface. There is a reverse relation between the variants of SWD of the surface, and the slope of the surface, in second-degree polynomial form with a Pearson’s correlation coefficient (r) of 0.82. North aspect receive the minimum SWD average with a 681 W m–2 while flat lands receive the maximum SWD average with a 783 W m–2. Areas with the highest elevation, lowest slope, and flatlands, receive the highest SWD. Built-up lands have the lowest Net radiation flux average with a 595 W m–2 while water has the highest Net radiation flux average with a 761 W m–2. Net radiation flux is directly related with NDVI, Greenness and Wetness parameters, while it is reversely related to NDBI, Albebo and Brightness with a high r.  相似文献   

8.
Land-surface temperature (LST) is strongly affected by altitude and surface albedo. In mountain regions where steep slopes and heterogeneous land cover are predominant, LST can vary significantly within short distances. Although remote sensing currently provides opportunities for monitoring LST in inaccessible regions, the coarse resolution of some sensors may result in large uncertainties at sub-pixel scales. This study aimed to develop a simple methodology for downscaling 1 km Moderate Resolution Spectroradiometer (MODIS) LST pixels, by accounting for sub-pixel LST variation associated with altitude and land-cover spatial changes. The approach was tested in Mount Kilimanjaro, Tanzania, where changes in altitude and vegetation can take place over short distances. Daytime and night-time MODIS LST estimates were considered separately. A digital elevation model (DEM) and normalized difference vegetation index (NDVI), both at 250 m spatial resolution, were used to assess altitude and land-cover changes, respectively. Simple linear regressions and multivariate regressions were used to quantify the relationship between LST and the independent variables, altitude and NDVI. The results show that, in Kilimanjaro, altitude variation within the area covered by a 1 km MODIS LST pixel can be up to ±300 m. These altitude changes can cause sub-pixel variation of up to ±2.13°C for night-time and ±2.88°C for daytime LST. NDVI variation within 1 km pixels ranged between –0.2 and 0.2. For night-time measurements, altitude explained up to 97% of LST variation, while daytime LST was strongly affected by land cover. Using multivariate regressions, the combination of altitude and NDVI explained up to 94% of daytime LST variation in Kilimanjaro. Finally, the downscaling approach proposed in this study allowed an improved representation of the influence of landscape features on local-scale LST patterns.  相似文献   

9.
The objective of the present study is to monitor and predict the changes in land surface temperature (LST) in the North of Jordan during the Period 2000 to 2016. Due to political instability in the nearby countries Syria and Iraq, Jordan has witnessed increased influxes of refugees, starting from the year 2003, which has been led to the urban expansion in the area that reflected on the climatic conditions and affected the LST values. Satellite images were used for providing LST, the acquired images represented two seasons of each year, namely summer and winter. Simulation and prediction of LST values for the next 10 years were carried out using nonlinear autoregressive exogenous (NARX) artificial neural network (ANN) model. The inputs to the model consist of meteorological data collected from eight stations in the study area, population, and land use and land cover (LULC). In fact, LULC was expressed in terms of normalized difference building index (NDBI) and normalized difference vegetation index (NDVI) that were obtained from satellite images. The model showed a high correlation between these parameters and the values of simulated LST, where the correlation coefficient for the training set, validation set, testing set and for the entire data ranged from 0.91 to 0.92. Based on the predicted LST values, LST maps for the next 10 years were developed and compared with the present actual LST maps for the year 2016. The comparison has shown an average increase of 1.1 °C in the average LST values, which is considered a significant increase compared with previous studies.  相似文献   

10.
This work estimated the land surface emissivities (LSEs) for MODIS thermal infrared channels 29 (8.4–8.7 μm), 31 (10.78–11.28 μm), and 32 (11.77–12.27 μm) using an improved normalized difference vegetation index (NDVI)-based threshold method. The channel LSEs are expressed as functions of atmospherically corrected reflectance from the MODIS visible and near-infrared channels with wavelengths ranging from 0.4 to 2.2 μm for bare soil. To retain the angular information, the vegetation LSEs were explicitly expressed in the NDVI function. The results exhibited a root mean square error (RMSE) among the estimated LSEs using the improved method, and those calculated using spectral data from Johns Hopkins University (JHU) are below 0.01 for channels 31 and 32. The MODIS land surface temperature/emissivity (LST/E) products, MOD11_L2 with LSE derived via the classification-based method with 1 km resolution and MOD11C1 with LSE retrieved via the day/night LST retrieval method at 0.05° resolution, were used to validate the proposed method. The resultant variances and entropies for the LSEs estimated using the proposed method were larger than those extracted from MOD11_L2, which indicates that the proposed method better described the spectral variation for different land covers. In addition, comparing the estimated LSEs to those from MOD11C1 yielded RMSEs of approximately 0.02 for the three channels; however, more than 70% of pixels exhibited LSE differences within 0.01 for channels 31 and 32, which indicates that the proposed method feasibly depicts LSE variation for different land covers.  相似文献   

11.
This research examined the impact of urban land-cover types on the urban heat island (UHI) in Hangzhou, China. Air temperatures (Tair) measured at a height of 1.5 m at times 00:00, 10:00, 14:00, and 18:00 were used for atmospheric urban heat island (AUHI) analysis. Data from the Environmental and Disaster Monitoring and Forecasting Satellite B (HJ-1B) were utilized to retrieve land surface temperature (LST) for surface urban heat island (SUHI) analysis and to map land-cover distribution. Pearson correlation and partial correlation analyses were performed to investigate the impacts of land-cover types on Tair, LST, and the relationship between Tair and LST. The results show that (1) LST and night-time Tair are sensitive to the amount of impervious surface and vegetation and (2) land-cover types did not significantly influence the correlation between LST and Tair at 10:00, but the amount of impervious surface and vegetation had significant impact at 0:00. This research indicates that the percentage of impervious surface is a good indicator for LST and night-time Tair, and for relating night-time AUHI to satellite-based observations of SUHI. This research also proposed a new method that considers both temperature patterns and land-cover types to explain the spatial variations in AUHI and a new indicator – cooling-distance rate – to help people to select a suitable living place when both work–home distance and work–home temperature difference are factors that they wish to consider.  相似文献   

12.
Light use efficiency (LUE) is of great importance for carbon cycle and climate change research. This study presents a new LUE model incorporation of vegetation indices (VIs) and land surface temperature (LST) derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) in Harvard Forest. Three indices, including the normalized difference vegetation index (NDVI), the two-band enhanced vegetation index (EVI2) and the soil-adjusted vegetation index (SAVI), were selected as indicators of forest canopy greenness. A single VI provided moderate estimates of LUE with coefficients of determination (R 2) 0.6219, 0.7094 and 0.7502 for NDVI, EVI2 and SAVI, respectively. Our results demonstrated that canopy LUE was related both to the canopy photosynthesis efficiency and air temperature (R 2?=?0.5634). Therefore, the MODIS LST product was incorporated as a surrogate for monitoring of environmental stresses as the observed relationship between LST and both air temperature (R 2?=?0.8828) and vapour pressure deficit (VPD) (R 2?=?0.6887). The new model in terms of (VI)?×?(Scaled (LST)) provided improved estimates of LUE estimation with R 2 of 0.7349, 0.7561 and 0.7879 for NDVI, EVI2 and SAVI, respectively. The results will be useful for the development of future LUE models based entirely on remote-sensing observations.  相似文献   

13.
Recent technological advances in remote sensing have shown that soil moisture can be measured by microwave remote sensing under some topographic and vegetation cover conditions. However, current microwave technology limits the spatial resolution of soil moisture data. It has been found that the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) are related to surface soil moisture; therefore, a relationship between ground observed soil moisture and satellite NDVI and LST products can be developed. Three years of 1 km NDVI and LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) have been combined with ground measured soil moisture to determine regression relationships at a 1 km scale. Results show that MODIS NDVI and LST are strongly correlated with the ground measured soil moisture, and regression relationships are land cover and soil type dependent. These regression relationships can be used to generate soil moisture estimates at moderate resolution for study area.  相似文献   

14.
ABSTRACT

Land surface temperature (LST) plays a significant role in surface water circulation and energy balance at both global and regional scales. Thermal disaggregation technique, which relies on vegetation indices, has been widely used due to its advantage in producing relatively high resolution LST data. However, the spatial enhancement of satellite LST using soil moisture delineated vegetation indices has not gained enough attention. Here we compared the performances of temperature vegetation dryness index (TVDI), normalized difference vegetation index (NDVI), and fractional vegetation coverage (FVC), in disaggregating LST over the humid agriculture region. The random forest (RF) regression was used to depict the relationship between LST and vegetation indices in implementing thermal disaggregating. To improve the model performance, we used the thin plate spline (TPS) approach to calibrate the RF residual estimation. Results suggested that the models based on TVDI performed better than those based on NDVI and FVC, with a reduced average root mean square error and mean absolute error of 0.20 K and 0.16 K, respectively. Moreover, based on the surface energy balance model, we found the surface evapotranspiration (ET) derived with the TVDI disaggregated LST as inputs achieved higher accuracy than those derived with NDVI and FVC disaggregated LST. It is indicated that TVDI, a soil moisture delineated vegetation indices, can improve the performance of LST enhancement and ET estimation over the humid agriculture region, when combining random forest regression and TPS calibration. This work is valuable for terrestrial hydrology related research.  相似文献   

15.
随着城市化进程的加快,城市热力场也随之发生变化,从而影响着城市区域环境、社会经济以及社会环境。由于NDVI具有季相变化的不稳定性,本研究采用两个时相TM/ETM+影像分析福州市及其周边地区不透水面对热力场的时空分布变化状况。为了获取精确的城市不透水面信息,本实验采用NDVI二元法结合2000年同区域的IKONOS影像提取不透水面信息。通过定量分析不透水面百分比、NDVI与地表温度的关系,得出不透水面百分比与城市地表温度呈线性相关,其相关系数在0.7左右;尤其30%以上的不透水面对地表热环境的空间分布影响最为突出,因此,相对于不稳定的NDVI而言,不透水面信息能更好地反映城市热环境的空间分布状况。  相似文献   

16.
Data from three thermal sensors with different spatial resolution were assessed for urban surface temperature retrieval over the Yokohama City, Japan. The sensors are Thermal Airborne Broadband Imager (TABI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and MODerate resolution Imaging Spectroradiometer (MODIS). Two algorithms were developed for land surface temperature (LST) retrieval from TABI image and ASTER thermal infrared (TIR) channels 13 and 14. In addition, ASTER LST and MODIS LST products were also collected. All the LST images were assessed by analyzing the relationship between LST and normalized difference vegetation index (NDVI) and by spatial distributions of LST profiles, derived from typical transects over the LST images. In this study, a strong negative relationship between LST and NDVI has been demonstrated although the degree of correlation between NDVI and LST varies slightly among the different LST images. Cross-validation among the LST images retrieved from the three thermal sensors of different spatial resolutions indicates that the LST images retrieved from the 2 channel ASTER data and a single band TABI thermal image using our developed algorithms are reliable. The LST images retrieved from the three sensors should have different potential to urban environmental studies. The MODIS thermal sensor can be used for the synoptic overview of an urban area and for studying urban thermal environment. The ASTER, with its TIR subsystem of 90-m resolution, allows for a more accurate determination of thermal patterns and properties of urban land use/land cover types, and hence, a more accurate determination of the LST. In consideration of the high heterogeneity of urban environment, the TABI thermal image, with a high spatial resolution of 2 m, can be used for rendering and assessing complex urban thermal patterns and detailed distribution of LST at the individual house level more accurately.  相似文献   

17.
ABSTRACT

Land surface temperatures (LST) in urban landscapes are typically more heterogeneous than can be monitored by the spatial resolution of satellite-based thermal infrared sensors. Thermal sharpening (TS) methods permit the disaggregation of LST based on finer-grained multispectral information, but there is continued debate over which spectral indices are most appropriate for urban TS, and how they should be configured in a predictive regression framework. In this study, we evaluate the stability of various TS kernels with respect to LST at different spatial (Landsat 8) and diurnal (MODIS) scales, and present a new TS method, global regression for urban thermal sharpening (SGRUTS), based on these findings. Of the spectral indices examined, the normalized difference built-up index (NDBI) and the normalized multi-band drought index (NMDI) were the most spatially stable for Landsat 8 and MODIS overall. Kernel performance varied diurnally, with the index-based impervious surface index (IBI) and broadband α selected for 1030 h, NDBI and NMDI selected for 1330 h, and IBI and NMDI selected for 2230 h and 130 h, respectively. Over a range of field-validated metrics, the SGRUTS scheme comprising a two-factor interaction between NDBI and NMDI was competitive with the best alternative TS models compared. This SGRUTS model is essentially a refinement of the Enhanced Physical Method for urban applications in terms of kernel selection and configuration, and has interpretative advantages over more complex statistical schemes.  相似文献   

18.
In water-deficient areas, water resource management requires evapotranspiration at high spatiotemporal resolution – an impossible situation given the trade-off between spatial and temporal resolutions in space-borne systems. Some researchers have suggested sharpening the Moderate Resolution Imaging Spectroradiometer (MODIS) land-surface temperature product with a resolution from 1 km to 250 m and a functional relationship between surface temperature (T r) and normalized difference vegetation index (NDVI). Evapotranspiration at 250 m resolution can be obtained once every few days using this technique. Based on the interpretation of the triangular T r–NDVI space and assuming uniform soil moisture conditions in a coarse pixel, this paper suggests an alternative algorithm – the triangle algorithm – for sharpening. The triangle algorithm was tested using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data from an arid zone. Sharpened surface temperatures and reference temperatures were compared at 60 m and 240 m resolutions. Root mean square errors with the triangle algorithm are smaller than those with a functional relationship between T r and NDVI. This paper will also discuss the impact of soil moisture variations in the coarse pixel on the triangle algorithm. Finally we should mention that the triangle algorithm only applies to regions with non-stressed vegetation canopies.  相似文献   

19.
The Moderate Resolution Imaging Spectroradiometer (MODIS) has provided an improved capability for moderate resolution land surface monitoring and for studying surface temperature variations. Surface temperature is a key variable in the surface energy balance. To investigate the temporal variation of surface temperature in relation to different vegetation types, MODIS data from 2000–04 were used, especially in the reproductive phase of crops (September–October). The vegetation types used for this study were agriculture in desert areas, rainfed agriculture, irrigated agriculture, and forest. We found that among the different vegetation types, the desert‐based agriculture showed the highest surface temperature followed by rainfed agriculture, irrigated agriculture, and forest. The variation in surface temperature indicates that the climatic variation is mostly determined by the different types of vegetation cover on the Earth's surface rather than rapid climate change attributable to climatic sources. The mean land surface temperature (LST) and air temperature (T a) were plotted for each vegetation type from September to October during 2000 and 2004. Higher temperatures were observed for each vegetation type in 2000 as compared to 2004 and lower total rainfall was observed in 2000. The relationship between MODIS LST and T a measurements from meteorological stations was established and illustrated that years 2000 and 2004 had a distinct climatic variability within the time‐frame in the study area. In all test sites, the study found that there was a high correlation (r = 0.80–0.98) between LST and T a.  相似文献   

20.
A high temporal frequency of high-resolution thermal data is required in regional evapotranspiration (ET) studies. In this article, a spatial-temporal thermal remote-sensing sharpening scheme, which can be used to perform temporally stable land surface temperature (LST) mapping with high spatial resolution and further facilitate the estimation of ET, is discussed in the context of the Soil Moisture Experiment of 2002. To demonstrate this scheme, relationships between LST and three remote-sensing parameters (normalized difference vegetation index (NDVI), fractional vegetation cover (FVC), and Bowen ratio) were first used in a thermal disaggregation procedure for retrieving LSTs at a 250-m scale. Then, the spatial and temporal adaptive reflectance fusion (STARFM) model was applied to the 250-m LSTs, producing LST data at a fine resolution of 60 m and a fine temporal resolution of 1 day. Two remote-sensing-based energy balance models were then used to retrieve the ET at the Moderate Resolution Imaging Spectroradiometer overpass time respectively using 250- and 60-m LSTs. The results showed that the Bowen ratio-based LSTs were matched field observations better than did the LSTs obtained with the other two approaches (NDVI- and FVC-based) at the 250-m scale, and consequently produced 250-m ET mapping that better matched the observed tower-based values. When combined with the STARFM fusion model, the 250-m Bowen ratio-based LSTs produced more accurate time-series LSTs and ET at the 60-m scale. The Bowen ratio, which is more related to surface energy principles and the soil moisture variation, was effective in disaggregating LSTs and promoting the estimation of ET. Overall, sharpened LSTs using the combination of thermal disaggregation procedure and the STARFM fusion model could substantially improve remote-sensing-based ET estimates. Moreover, the STARFM model that can fuse LST from 250 to ~100 m should be given more attention as long as the thermal disaggregation procedure that can disaggregate LST from 1000 to 250 m, provided that it contributed approximately 10.1% to further improving ET retrieval performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号