首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study examines the utility of NASA's circa 1990 and circa 2000 global orthorectified Landsat dataset for land cover and land use change mapping and monitoring across Africa. This is achieved by comparing the temporal and spatial variation of NDVI, measured independently by the NOAA-AVHRR at the time of Landsat scene acquisition, against the seasonal mean for each Landsat scene extent. Decadal sequences of drift-corrected NOAA-AVHRR imagery were used to calculate NDVI means and standard deviations for the periods covered by the scenes composing the c.1990 and c.2000 Landsat datasets. The specific NOAA-AVHRR NDVI values at the acquisition date of each individual Landsat scene were also calculated and the differences, both from the mean and scaled by standard deviation, were mapped for the Landsat scene footprints in the c.1990 and c.2000 datasets. The resulting maps show the temporal position of each Landsat scene within the seasonal NDVI cycle, and provide a valuable guide to assist in quantifying uncertainty and interpreting land cover and land use changes inferred from these Landsat data.  相似文献   

2.
Biomass burning combusts Earth's vegetation (in forests, savannas and agricultural lands) and occurs over huge areas of the Earth's surface. Global estimates of biomass burning are thus required in order to provide exact figures of the gas fluxes derived from this source. In this paper we use coarse resolution images for estimating above‐ground burned biomass and CO2 emissions for tropical Africa for the year 1990. The burned land cover areas have been derived from burn scar and land cover maps using the global daily National Oceanic and Atmospheric Administration–National Aeronautics and Space Administration (NOAA–NASA) Pathfinder AVHRR 8?km land dataset. A burned area estimation of (742±222)?Mha has been considered. Monthly maximum Normalized Difference Vegetation Index (NDVI) composites and biomass density measurements have been used for modelling the temporal behaviour of above‐ground biomass for the main seasonal vegetation classes in Africa (humid savanna, derived humid savanna, dry savanna grassland and broadleaf savanna). The amount of above‐ground burned biomass and therefore CO2 emissions can be estimated from burned land cover area, above‐ground biomass density, burn efficiency and emission factor of trace gas by land cover class. A total of 6494 (3675–9312) Tg for CO2 emissions was computed for tropical Africa for the year 1990.  相似文献   

3.
A problem with NOAA AVHRR imagery is that the intrinsic scale of spatial variation in land cover in the U.K. is usually finer than the scale of sampling imposed by the image pixels. The result is that most NOAA AVHRR pixels contain a mixture of land cover types (sub-pixel mixing). Three techniques for mapping the sub-pixel proportions of land cover classes in the New Forest, U.K. were compared: (i) artificial neural networks (ANN); (ii) mixture modelling; and (iii) fuzzy c -means classification. NOAA AVHRR imagery and SPOT HRV imagery, both for 28 June 1994, were obtained. The SPOT HRV images were classified using the maximum likelihood method, and used to derive the 'known' sub-pixel proportions of each land cover class for each NOAA AVHRR pixel. These data were then used to evaluate the predictions made (using the three techniques and the NOAA AVHRR imagery) in terms of the amount of information provided, the accuracy with which that information is provided, and the ease of implementation. The ANN was the most accurate technique, but its successful implementation depended on accurate co-registration and the availability of a training data set. Supervised fuzzy c -means classification was slightly more accurate than mixture modelling.  相似文献   

4.
During the last few decades, many regions have experienced major land use transformations, often driven by human activities. Assessing and evaluating these changes requires consistent data over time at appropriate scales as provided by remote sensing imagery. Given the availability of small and large-scale observation systems that provide the required long-term records, it is important to understand the specific characteristics associated with both observation scales. The aim of this study was to evaluate the potentials and limits of remote sensing time series for change analysis of drylands. We focussed on the assessment and monitoring of land change processes using two scales of remote sensing data. Special interest was given to the influence of the spatial and temporal resolution of different sensors on the derivation of enhanced vegetation related variables, such as trends in time and the shift of phenological cycles. Time series of Landsat TM/ETM+ and NOAA AVHRR covering the overlapping time period from 1990 to 2000 were compared for a study area in the Mediterranean. The test site is located in Central Macedonia (Greece) and represents a typical heterogeneous Mediterranean landscape. It is undergoing extensification and intensification processes such as long-term, gradual processes driven by changing rangeland management and the extension of irrigated arable land. Time series analysis of NOAA AVHRRR and Landsat TM/ETM+ data showed that both sensors are able to detect this kind of land cover change in complementary ways. Thereby, the high temporal resolution of NOAA AVHRR data can partially compensate for the coarse spatial resolution because it allows enhanced time series methods like frequency analysis that provide complementary information. In contrast, the analysis of Landsat data was able to reveal changes at a fine spatial scale, which are associated with shifts in land management practice.  相似文献   

5.
Long‐term changes in the Normalized Difference Vegetation Index (NDVI) have been evaluated in several studies but results have not been conclusive due to differences in data processing as well as the length and time of the analysed period. In this research a newly developed 1 km Advanced Very High Resolution Radiometer (AVHRR) satellite data record for the period 1985–2006 was used to rigorously evaluate NDVI trends over Canada. Furthermore, climate and land cover change as potential causes of observed trends were evaluated in eight sample regions. The AVHRR record was generated using improved geolocation, cloud screening, correction for sun‐sensor viewing geometry, atmospheric correction, and compositing. Results from both AVHRR and Landsat revealed an increasing NDVI trend over northern regions where comparison was possible. Overall, 22% of the vegetated area in Canada was found to have a positive NDVI trend based on the Mann–Kendal test at the 95% confidence level. Of these, 40% were in northern ecozones. The mean absolute difference of NDVI measurements between AVHRR and Landsat data was <7%. When compared with results from other studies, similar trends were found over northern areas, while in southern regions the results were less consistent. Local assessment of potential causes of trends in each region revealed a stronger influence of climate in the north compared to the south. Southern regions with strong positive trends appeared to be most influenced by land cover change.  相似文献   

6.

Meteorological satellites are appropriate for operational applications related to early warning, monitoring and damage assessment of forest fires. Environmental or resources satellites, with better spatial resolution than meteorological satellites, enable the delineation of the affected areas with a higher degree of accuracy. In this study, the agreement of two datasets, coming from National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) and Landsat TM, for the assessment of the burned area, was investigated. The study area comprises a forested area, burned during the forest fire of 21-24 July 1995 in Penteli, Attiki, Greece. Based on a colour composite image of Landsat TM a reference map of the burned area was produced. The scatterplot of the multitemporal Normalized Difference Vegetation Index (NDVI) images, from both Landsat TM and NOAA/AVHRR sensors, was used to detect the spectral changes due to the removal of vegetation. The extracted burned area was compared to the digitized reference map. The synthesis of the maps was carried out using overlay techniques in a Geographic Information System (GIS). It is illustrated that the NOAA/AVHRR NDVI accuracy is comparable to that from Landsat TM data. As a result NOAA/AVHRR data can, operationally, be used for mapping the extent of the burned areas.  相似文献   

7.

A new spectral index named Burned Area Index (BAI), specifically designed for burned land discrimination in the red-near-infrared spectral domain, was tested on multitemporal sets of Landsat Thematic Mapper (TM) and NOAA Advanced Very High Resolution Radiometer (AVHRR) images. The utility of BAI for burned land discrimination was assessed against other widely used spectral vegetation indices: Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Global Environmental Monitoring Index (GEMI). BAI provided the highest discrimination ability among the indices tested. It also showed a high variability within scorched areas, which reduced the average normalized distances with respect to other indices. A source of potential confusion between burned land areas and low-reflectance targets, such as water bodies and cloud shadows, was identified. Since BAI was designed to emphasize the charcoal signal in post-fire images, this index was highly dependent on the temporal permanence of charcoal after fires.  相似文献   

8.
NOAA-AVHRR data processing for the mapping of vegetation cover   总被引:1,自引:0,他引:1  
The NOAA-AVHRR images have been widely used for global studies due to their low cost, suitable wavebands and high temporal resolution. Data from the AVHRR sensor (Bands 1 and 2) transformed to the Normalized Difference Vegetation Index (NDVI) are the most common product used in global land cover studies. The purpose of this Letter is to present the vegetation, soil, and shade fraction images derived from AVHRR, in addition to NDVI, to monitor land cover. Six AVHRR images from the period of 21 to 26 June 1993 were composed and used to obtain the above mentioned products over Sa o Paulo State, in the south-east of Brazil. Vegetation fraction component values were strongly correlated with NDVI values ( r 0.95; n 60). Also, the fraction image presented a good agreement with the available global vegetation map of Sao Paulo State derived from Landsat TM images.  相似文献   

9.
The feasibility of correcting for errors in apparent extent of land cover types on coarse spatial resolution satellite imagery was analysed using a modelling approach. The size distributions for small burn scars mapped with two Landsat Multi-spectral Scanner (MSS) images and ponds mapped with an ERS-1 synthetic aperture radar (SAR) image were measured using geographical information system (GIS) software. Regression analysis showed that these size distributions could be modelled with two types of statistical distributions a power distribution and an exponential distribution. A comparison of the size distributions of small burn scars as observed with the Landsat MSS imagery to the distribution observed with National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) imagery indicated that distortions due to the coarse spatial resolution of AVHRR caused overestimation of the burn area. This bias was primarily caused by detection in two or three AVHRR pixels of burns whose actual size was on the order of a single AVHRR pixel. Knowledge of the type of the actual size distribution of small fragments in a scene and the causes of distortion may lead to methods for correcting area estimates involving models of the size distribution observed with coarse imagery and requiring little or no recourse to fine scale data.  相似文献   

10.
Deforestation in Rondônia state in the south-western part of the Brazilian Legal Amazon was analysed using Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), National Oceanic & Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and hydrological data. The Landsat sensor data coverage was supplemented with Pathfinder AVHRR Land (PAL) Normalized Difference Vegetation Index (NDVI) datasets. The results from the Landsat-based analysis show that more than 30% of the natural vegetation in the study area was subject to deforestation between 1973 and 1999, a finding reinforced by analysis of the PAL NDVI data. In addition, it was established that trends in the PAL NDVI datasets were coincident with the pattern of deforestation. Apart from imagery analysis, time variations in the hydrological data between 1982 and 1988 were used to estimate the evapotranspiration. A decreasing trend was identified in the rate of evapotranspiration, suggesting that deforestation has a significant impact on the local hydrological cycle.  相似文献   

11.
The global land 1 km data set project represents an international effort to acquire, archive, process, and distribute 1 km AVHRR data of the entire global land surface in order to meet the needs of the international science community. A network of 26 high resolution picture transmission (HRPT) stations, along with data recorded by the National Oceanic and Atmospheric Administration (NOAA), has been acquiring daily global land coverage since 1 April 1992. A data set of over 30000 AVHRR images has been archived and made available for distribution by the United States Geological Survey, EROS Data Center and the European Space Agency

Under the guidance of the International Geosphere Biosphere programme, processing standards for the AVHRR data have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are related to the study of surface vegetation cover. A prototype 10-day composite was produced for the period of 21–30 June 1992. Production of an 18-month time series of 10-day composites is underway.

  相似文献   

12.
With the development of the global economy, environmental research has become more important than ever, especially in the Asian region. The objective of this study is to produce a land cover classification dataset for the whole of Asia using the NOAA AVHRR 1-km dataset. Ground data were mainly collected from existing thematic maps which were obtained from members of the Land Cover Working Group (LCWG) of the Asian Association of Remote Sensing (AARS). Classification was mainly based on cluster analysis of the monthly ratio of surface temperature and Normalized Difference Vegetation Index (NDVI) for seven months from April to October 1992. Additional variables, such as DEM, the maximum monthly composite NDVI in a year, and the minimum monthly composite NDVI in a year were also used in the classification processing. In order to add and improve ground data in the future, collected ground data will be published with the developed land cover dataset.  相似文献   

13.
The bi-directional reflectance distribution function (BRDF) alters the seasonal and inter-annual variations exhibited in Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data and this hampers the detection and, consequently, the interpretation of temporal variations in land-surface vegetation. The magnitude and sign of bi-directional effects in commonly used AVHRR data sets depend on land-surface properties, atmospheric composition and the type of atmospheric correction that is applied to the data. We develop an approach to estimate BRDF effects in AVHRR NDVI time series using the Moderate Resolution Imaging Spectrometer (MODIS) BRDF kernels and subsequently adjust NDVI time series to a standard illumination and viewing geometry. The approach is tested on NDVI time series that are simulated for representative AVHRR viewing and illumination geometry. These time series are simulated with a canopy radiative transfer model coupled to an atmospheric radiative transfer model for four different land cover types—tropical forest, boreal forest, temperate forest and grassland - and five different atmospheric conditions - turbid and clear top-of-atmosphere, turbid and clear top-of-atmosphere with a correction for ozone absorption and Rayleigh scattering applied (Pathfinder AVHRR Land data) and ground-observations (fully corrected for atmospheric effects). The simulations indicate that the timing of key phenological stages, such as start and end of growing season and time of maximum greenness, is affected by BRDF effects. Moreover, BRDF effects vary with latitude and season and increase over the time of operation of subsequent NOAA satellites because of orbital drift. Application of the MODIS kernels on simulated NVDI data results in a 50% to 85% reduction of BRDF effects. When applied to the global 18-year global Normalized Difference Vegetation Index (NDVI) Pathfinder data we find BRDF effects similar in magnitude to those in the simulations. Our analysis of the global data shows that BRDF effects are especially large in high latitudes; here we find that in at least 20% of the data BRDF errors are too large for accurate detection of seasonal and interannual variability. These large BRDF errors tend to compensate, however, when averaged over latitude.  相似文献   

14.
Land use/land cover of the Earth is changing dramatically because of human activities and natural disasters. Information about changes is useful for updating land use/land cover maps for planning and management of natural resources. Several methods for land use/land cover change detection using time series Landsat imagery data were employed and discussed. Landsat 5 TM colour composites of 1990, 1993, 1996 and 1999 were employed for locating training samples for supervised classification in the coastal areas of Ban Don Bay, Surat Thani, Thailand. This study illustrated an increasing trend of shrimp farms, forest/mangrove and urban areas with a decreasing trend of agricultural and wasteland areas. Land use changes from one category to others have been clearly represented by the NDVI composite images, which were found suitable for delineating the development of shrimp farms and land use changes in Ban Don Bay.  相似文献   

15.
After analysing formulations of the horizontal wind velocity above a non‐uniform underlying surface, it is found that the mean height of roughness elements, fractional vegetation cover and leaf area index are the most essential parameters of vertical wind profile under neutral conditions. By using Landsat‐5 data, every‐10‐days observed data in the field, the every‐10‐days Normalized Difference Vegetation Index (NDVI) data from NOAA‐14 meteorological satellite, 1 : 10 000 land‐use data, and 1 : 10 000 topographical data, the mean height, leaf area index and fractional vegetation cover of wheat at Yucheng Integrated Agricultural Experiment Station are simulated as functions of NDVI. Then, hourly horizontal wind velocity at a height of 4 m during the period from 21:05 on 5 March 2000 to 7:05 on 24 May 2000 is calculated, for which hourly observed horizontal wind velocity at a height of 2 m is first used to simulate the wheat parameter of the dimensionless constant. The results show that the simulated velocity is almost identical to the observation velocity at a height of 4 m.  相似文献   

16.
由于技术条件的限制,一个传感器很难同时具有高空间分辨率和高时间分辨率。然而,在高分辨率尺度上监测地表景观季节性变化的能力是全球的迫切需要,融合周期短、覆盖范围广与分辨率高、周期长的遥感数据是一种较好的方法。基于AVHRR时间分辨率高和TM空间分辨率高及其数据积累时间长的特点,选择若尔盖高原为研究区域,在改进ESTARFM方法的基础上,对TM NDVI和AVHRR NDVI进行融合,构建高时空分辨率的NDVI数据集。研究结果表明:该方法能有机结合AVHRR NDVI的时间变化信息与TM NDVI的空间差异信息,有效实现高时空分辨率NDVI数据集的重构,3景预测高分辨率NDVI与MODIS NDVI产品相关系数分别达到了0.89、0.91和0.85。该方法能够在时间上保留高时间分辨率数据的时间变化信息,同时在空间上反映高空间分辨率数据的空间差异信息,从而为有效构建相对高分辨率时间序列NDVI数据集提供了可能的方法。  相似文献   

17.
Seven Landsat Multispectral Scanner (MSS) scenes in central Africa were coregistered with 8 km resolution data from the 1987 AVHRR Pathfinder Land data set. Percent forest cover in each 8 km grid cell was derived from the classified MSS scenes. Linear relationships between percent forest cover and 30 multitemporal metrics derived from all AVHRR optical and thermal channels were determined. Correlations were strongest for the mean annual normalized difference vegetation index (NDVI) and mean annual brightness temperature (AVHRR Channel 3) and weakest for those metrics, besides NDVI, based on near-infrared reflectances (AVHRR Channel 2). The relationships were used to estimate percent forest cover in various locations in the study area using multiple linear regression and regression trees. Overall, the multiple linear regression provided more accurate results. Predicted percent forest cover estimates were within 20% of the “actual” percent forest cover (derived from the MSS data) for approximately 90% of the grid cells. The RMS error for the prediction was 12% forest cover. RMS errors above 18% forest cover were obtained when using AVHRR data from a single month to derive predictive relationships. The results demonstrate that multitemporal data reflecting vegetation phenology can be used to estimate subpixel forest cover at coarse spatial resolutions.  相似文献   

18.
Crop Normalized Difference Vegetation Index (NDVI) time profiles and crop acreage estimates were derived from the application of linear mixture modelling to Advanced Very High Resolution Radiometer (AVHRR) data over a test area in the southern part of the Pampa region, Argentina. Bands 1 and 2 from seven AVHRR scenes (June to January 1991) were combined to produce fraction images of winter crops, summer crops and pastures. A Landsat Thematic Mapper (TM) scene of the region was classified and superimposed to the AVHRR Local Area Coverage (LAC) data by means of a correlation technique. Each class signature was extracted by regressing the AVHRR response on the cover types proportions, estimated from Landsat-TM data, over sets of calibration windows. The crop NDVI profiles were hence derived from the class signatures in bands 1 and 2. These profiles appeared consistent with the cover types, but variability depending on the set of windows was noted. The assessment of the class signatures was indirectly accomplished through the subpixel classifications of the AVHRR data, performed using the different sets of class spectra. Although some discrepancies between AVHRR and Landsat–TM estimates were observed at the individual window level, the classification results compared quite well on a regional scale with Landsat–TM estimates: crop acreage was estimated to an overall accuracy ranging from 89 to 95 per cent according to the spectra used in the classification. Definitely, the proposed methodology should permit a better exploitation of the temporal resolution of AVHRR data in both the areas of yield prediction and vegetation classification. Furthermore, the perational application of such a methodology for crop monitoring will undoubtedlybe facilitated with the coming sensor systems such as the ModerateResolution Imaging Spectroradiometer (MODIS), the SPOT Vegetation Monitoring Instrument or the ‘Satelite Argentino Cientifico’ (SAC–C).  相似文献   

19.
20.
Abstract

Several investigations have shown that NOAA NDVI data accumulated during a rainy season can be related to total rainfall or final primary productivity in the Sahel. However, serious problems can arise when looking for quantitative relations to monitor and forecast crop yield from NDVI values. Geographical variability can affect such relations, while the use of data taken from a whole season is impractical for forecasting. The present paper proposes a complete methodology of NDVI data processing which only utilizes NOAA AVHRR scenes from the first part of successive rainy seasons. A series of basic corrections are first applied to the original data to obtain reliable NDVI maximum value composites at the middle of the rainy seasons considered. Next, the variability in land resources is accounted for by means of a standardization process which normalizes the mean NDVI levels of some areas on the relevant multi-temporal averages and standard deviations. In this way, good estimates of the actual condition of vegetation can be obtained in relation to the local seasonal trend

The methodology was applied to the Sahelian sub-departments of Niger with data from four years (1986–1989). The most interesting result achieved concerns the estimation of final grain (millet and sorghum) yield for the sub-departments by the end of July with a mean error of about 0·08 T ha ?1. This timely evaluation could be of great utility in the context of an efficient drought early warning system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号