首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005–06. Surveys covered eastern waters in 2005 (38.8–43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs (n = 10,393) and larvae (n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950–2640 per m−2) were obtained off north-eastern Tasmania (40.5–41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0–37.7°S) in October 2002–03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125–325 m deep and median temperatures 13.5–14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.  相似文献   

2.
As part of E-Flux III cruise studies in March 2005, we investigated phytoplankton community dynamics in a cyclonic cold-core eddy (Cyclone Opal) in the lee of the Hawaiian Islands. Experimental incubations were conducted under in situ temperature and light conditions on a drift array using a two-treatment dilution technique. Taxon-specific estimates of growth, grazing and production rates were obtained from analyses of incubation results based on phytoplankton pigments, flow cytometry and microscopy. Cyclone Opal was sampled at a biologically and physically mature state, with an 80–100 m doming of isopycnal surfaces in its central region and a deep biomass maximum of large diatoms. Depth-profile experimentation defined three main zones. The upper (mixed) zone (0–40 m), showed little compositional or biomass response to eddy nutrient enrichment, but growth, grazing and production rates were significantly enhanced in this layer relative to the ambient community outside of the eddy. Prochlorococcus spp. dominated the upper mixed layer, accounting for 50–60% of its estimated primary production both inside and outside of Opal. In contrast, the deep zone of 70–90 m showed little evidence of growth rate enhancement and was principally defined by a 100-fold increase of large (>20-μm) diatoms and a shift from Prochlorococcus to diatom dominance (80%) of production. The intermediate layer of 50–60 m marked the transition between the upper and lower extremes but also contained an elevated biomass of physiologically unhealthy diatoms with significantly depressed growth rates and proportionately greater grazing losses relative to diatoms above or below. Microzooplankton grazers consumed 58%, 65% and 55%, respectively, of the production of diatoms, Prochlorococcus and the total phytoplankton community in Cyclone Opal. The substantial grazing impact on diatoms suggests that efficient recycling was the major primary fate of diatom organic production, consistent with the low export fluxes and selective export of biogenic silica, as empty diatom frustules, in Cyclone Opal.  相似文献   

3.
In this study, seasonal and annual variability in the use of estuarine and ocean beaches by young-of-the-year bluefish, Pomatomus saltatrix, was evaluated by indices of abundance in coastal areas of southern New Jersey (1998–2000). Biological and physical factors measured at specific sites were correlated with bluefish abundance to determine the mechanisms underlying habitat selection. In addition, integrative and discrete indicators of bluefish growth were used to examine spatio-temporal dynamics in habitat quality and its effect on habitat selection by multiple cohorts of bluefish. Intra-annual recruitment to coastal areas of southern New Jersey was episodic, and resulted from the ingress of spring-spawned bluefish (hatch-date April) to estuarine beaches in late May to early June, followed by the recruitment of summer-spawned fish (hatch-date early July) to ocean beaches from July to October. Bluefish utilized estuarine and ocean beaches in a facultative manner that was responsive to dynamics in prey composition and temperature conditions. The recruitment and residency of bluefish in the estuary (1998–1999) and ocean beaches (1998), for example, was coincidental with the presence of the Atlantic silverside Menidia menidia and bay anchovy Anchoa mitchilli, the principal prey species for bluefish occupying these respective habitat-types. Bluefish abundance in the estuary (2000) and ocean beaches (1999–2000) was also correlated with water temperature, with the greatest catches of juveniles coinciding with their optimal growth temperature (24 °C). Bluefish growth, estimated as the slope of age–length relationships and daily specific growth rates, equaled 1.27–2.63 mm fork length (FL) d−1 and 3.8–8.7% body length increase d−1, respectively. The growth of sagittal otoliths was also used as a proxy for changes in bluefish size during and shortly before their time of capture. Accordingly, otolith growth rates of summer-spawned bluefish were greater at ocean beaches relative to the estuary and were explained by the more suitable temperature conditions found at ocean beaches during the mid- to late summer. Notwithstanding the fast growth of oceanic summer-spawned bluefish, individuals spawned in the spring were still larger in absolute body size at the end of the summer growing season (240 and 50–200 mm FL for spring- and summer-spawned bluefish, respectively). The size discrepancy between spring- and summer-spawned bluefish at the onset of autumn migrations and during overwintering periods may account for the differential recruitment success of the respective cohorts.  相似文献   

4.
The short-term (5 day) accumulation of Cu and Zn in different tissues of the marine gastropod, Littorina littorea, has been studied in the presence of 10 mg l−1 of antifouling paint particles and pre- or simultaneously contaminated algal food (Ulva lactuca). Accumulation of Cu was observed in the head–foot, digestive gland–gonad complex and gills to extents dependent on how and when food was contaminated and administered. However, retention of Zn was only observed in the gills and only when L. littorea and U. lactuca were simultaneously exposed to paint particles. Relative to the alga, faecal material was highly enriched in Zn, suggesting that the animal is able to rapidly eliminate this metal, most likely through the formation and egestion of insoluble phosphate granules. Thus, L. littorea is a useful biomonitor of marine contamination by antifouling applications in respect of Cu but not Zn.  相似文献   

5.
Several flatfish species, including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management. The present study used density data in conjunction with biochemical condition and growth measurements to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, Galveston Bay, West Bay). Three sites were sampled in each bay. Within each sampling site, replicate collections were taken from three habitats: 1) marsh edge (< 1 m depth), 2) intermediate zone (10–20 m from marsh interface;  1 m depth), and 3) bay zone (typically > 100 m from marsh interface; depth > 1 m). Average size of southern flounder collected was 12–19 mm standard length, and peak densities occurred in January and February. Catch data indicated that densities of southern flounder were significantly greater in East Bay (2.75 per 100 m2) than in Galveston Bay (0.91 per 100 m2) or in West Bay (0.45 per 100 m2). Densities were statistically similar among habitats. Otolith-based estimates of age indicated that the majority of southern flounder collected were 35–45 days old and derived from early December to early January hatch-dates. Growth rates were similar among bays and among habitats, with the average growth rate being 0.40 mm day− 1 (range: 0.21–0.76 mm day− 1). RNA:DNA was above the established baseline value for nutritional stress, indicating that newly settled southern flounder in the GBE were in relatively high condition. Habitat-specific differences in RNA:DNA ratios were not observed; however, ratios were significantly lower in West Bay (average 8.0) than in East Bay (average 9.5) or in Galveston Bay (average 9.8), suggesting the condition of new recruits may vary spatially within the GBE. Findings from the current study suggest density and condition of newly settled southern flounder vary at the bay scale, suggesting that parts of GBE do not function equally as nurseries.  相似文献   

6.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

7.
The effect of low salinity on the survival of recently hatched veliger of the gastropod Nassarius reticulatus (L.) was studied under laboratory conditions at 17 °C ± 1 °C. Significant mortality occurred for salinities ≤ 17 psu and the LS50 (salinity that causes 50% mortality) varied from 14.5 psu to 17.2 psu for exposures between 1 h and 48 h, respectively. The results were included in a mathematical model in order to estimate the mortality of N. reticulatus veliger in Ria de Aveiro under different salinity scenarios determined by numerical simulation. The model predicts a massive mortality of veliger immediately after their eclosion (1 h) in Ria de Aveiro during spring tide when the river input reaches its expected maximum — a situation that has been observed occasionally and may overlap a massive eclosion of veliger in the water. Except in this extreme situation, the mortality in Ria de Aveiro is generally restricted to the upstream limits of the channels. The results indicate that N. reticulatus recruitment in estuaries may strongly depend on the prevailing salinity regime.  相似文献   

8.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

9.
β-dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) concentrations were recorded from September 1999 to September 2000 in two geographically close ecosystems, differently affected by eutrophication: the Little Bay of Toulon and the Niel Bay (N.W. Mediterranean Sea, France). Little Bay had higher nutrient levels ([NO3]max. = 30.3 μM; [PO43−]max. = 0.46 μM) and higher chlorophyll a concentrations ([chl a]mean = 2.4 μg/L) compared to Niel Bay ([NO3]max. = 19.7 μM; [PO43−]max. = 0.17 μM; [chl a]mean = 0.4 μg/L). In the two sites, we measured dissolved (DMSPd < 0.2 μm) and particulate DMSP (DMSPp > 0.2 μm) concentrations. The DMSPp was particularly analysed in the 0.2–5, 5–90 and > 90 μm fractions. In the eutrophicated Little Bay, DMSPd concentrations showed a clear seasonality with high values from January to March (124–148 nM). The temporal profile of the DMSPp concentrations was similar, peaking in February–March (38–59 nM). In the less eutrophic Niel Bay, DMSPp concentrations were much lower (6–9 nM in March–April), whereas DMSPd concentrations were relatively high (110–92 nM in February–March). DMS concentrations were elevated from the end of the winter to the spring in Little Bay, ranging from 3 nM in October to 134 nM in March. In the less eutrophic Niel Bay, lower DMS levels were observed, generally not exceeding 20 nM. Each particulate fraction (0.2–5; 5–90; > 90 μm) contained less DMSP in Niel Bay than in Little Bay. At both sites, the 5–90 μm fraction made up most of the DMSPp. This 5–90 μm fraction consisted of microphytoplankton, principally Dinophyceae and Bacillariophyceae. The 5–90 μm biomass calculated from cell biovolumes, was more abundant in Little Bay where the bloom at the end of the winter (165 μg/L in March) occurred at the same time as the DMSP peaks. The estimated DMSPp to biomass ratio for the 5–90 μm fraction was always higher in Little Bay than in Niel Bay. This suggests that the high DMSP levels recorded in Little Bay were not only due to a large Dinophyceae presence in this ecosystem. Indeed, the peak of DMSPp to biomass ratio obtained from cell biovolumes (0.23 nmol/μg in March) was consistent with the proliferation of Alexandrium minutum. This Dinophyceae species may account for between 50% (2894 cells/L) and 63% (4914 cells/L) of the total phytoplankton abundance in the Little Bay of Toulon.  相似文献   

10.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

11.
Based on lab-culture experiments analyzing limitation and combination of iron and phosphorus on the growth of Cryptomonas sp. (Cryptophyceae), and the study of accumulation and release of Fe-bound P in sediment cores collected from the marine region of the Pearl River Estuary, China, reasons for the high frequency of phytoplankton bloom therein are discussed. Results show that the combined effect of Fe and P can obviously accelerate algal development, and the optimum culture conditions maintaining maximum growth rate are 0.05 μM Fe and 50 μM P. Cellular contents of Fe and P is consistent and the P:Fe molar ratio is 159:1. The optimum range of the P:Fe molar ratio in culture experiments for cell incubation is 500–1400. The vertical trends of total Fe and total P variations in sediments are parallel. Fe-bound P is the main species of inorganic sedimentary P. Through continuous leaching with agitation, 34–80% of exchangeable P and 4–23% of exchangeable Fe are concurrently released from the surficial sediments. This is a possible way by which nutrients are made available to phytoplankton. These factors might be responsible for a high frequency of harmful algal blooms in the Pearl River Estuary.  相似文献   

12.
Industrial activities, notably oil and gas industries, are expanding in the Arctic. Most of the biomarkers were developed using temperate organisms living at temperatures above 10 °C. Little is known about the biomarker responses of organisms living between −1.88 and 5 °C. Therefore, assessment of the toxicity of chemicals to cold-water adapted species is required. In this study, the Arctic scallop, Chlamys islandicus, was selected as a key species for bio-monitoring because of wide distribution in Arctic waters and its commercial value. Test animals, stored in seawater at 2 °C, were injected with benzo(a)pyrene (diluted in cod liver oil 5 mg ml−1) in the adductor muscle every 24 h for four days giving a final dose of 0, 74 and 90.6 mg kg−1 wet weight for control, low and high dose, respectively. The biomarkers used were total oxyradical scavenging capacity (TOSC) in the digestive gland and cell membrane stability of haemocytes. TOSC values were significantly reduced (ca. 30%) in exposed groups (P<0.05), indicating a depletion in oxyradical molecular scavengers. The antioxidant defences appeared to be overwhelmed by the reactive oxygen species as the plasma membranes of haemocytes were destabilised (P<0.05) probably due to lipid peroxidation. These data indicate that reactive oxygen species (ROS) were produced by Arctic scallops via the metabolisation of benzo(a)pyrene at 2 °C.  相似文献   

13.
The feeding behaviour of adults of the marine calanoid copepod Centropages hamatus was studied in laboratory experiments with ciliates and phytoplankton as food sources. The ingestion rate of algal (flagellates, diatoms) and ciliate prey (oligotrichs) as a function of prey concentration could be described by a Holling type III functional response, with close to zero ingestion rates at concentrations below 5 µg C l− 1. In general, ingestion of ciliates was higher than ingestion of algae, and maximum feeding rates by adult males reached were half the feeding rates of adult females at prey concentrations exceeding 50 µg C l− 1. When diatoms and ciliates were offered together C. hamatus (both sexes) fed exclusively on ciliates as long as they contributed with more than 5% to the mixture. This indicates the capability of active prey selection and switching between suspension feeding and ambush predation. Therefore, the feeding behaviour of adult C. hamatus can be characterised as omnivorous with a preference for larger motile prey. This implies a trophic level above two, if there is a sufficient abundance of protozoan food available.  相似文献   

14.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

15.
Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5–10 m apart showed some variation (−21.2‰ to −23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment.  相似文献   

16.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study.  相似文献   

17.
Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at  70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.  相似文献   

18.
During the 2006 Italian Antarctic expedition a diel sampling was performed close to Cape Hallett (Ross Sea) during the Austral summer. Under-ice seawater samples (4 m) were collected every 2 h for 28 h in order to estimate prokaryotic processes' variability and community structure dynamics. Prokaryotic and viral abundances, exoenzymatic activities (β-glucosidase, chitinase, lipase, alkaline phosphatase and leucine aminopeptidase), prokaryotic carbon production (3H-leucine incorporation) and community structure (Denaturing Gradient Gel Electrophoresis – DGGE fingerprints) were analysed. Results showed that the diel variability of the prokaryotic activity followed a variation in salinity, probably as a consequence of the periodical thawing of sea ice (driven by solar radiation and air temperature cycles), while negligible variation in viral and prokaryotic abundances occurred. The Bacterial and Archaeal community structures underwent an Operational Taxonomic Units (OTUs) temporal shift from the beginning to the end of the sampling, while Flavobacteria-specific primers highlighted high variations in this group possibly related to sea ice melting and substrate release.  相似文献   

19.
Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO2 concentration to 26 μmol kg−1 (by bubbling with air containing 0.9 mbar CO2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO2.  相似文献   

20.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号