首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
近年来因气候变暖和人类活动影响,巴尔喀什湖水位下降,造成了湖泊及周边区域的生态危机,引起了国际关注.基于巴尔喀什湖流域1879-2015年的湖泊水位、河川径流、降水、气温和土地利用等数据,采用趋势分析、突变检验、周期分析和相关性分析等方法,定量解析了流域湖泊水位、气候和土地利用等变化特征,综合探讨了巴尔喀什湖水位的影响因素.结果表明:1879-2015年,巴尔喀什湖水位在340~344 m呈明显丰枯周期性的变化,变化周期为48~52年;1988-2015年,水位呈现显著上升趋势,增速约为6.91 cm/a.巴尔喀什湖流域主要河流的入湖水量均呈减少趋势,东部主要支流甚至出现断流现象,使得伊犁河入湖水量占比约80%,且不断增大;中国伊犁河流入哈萨克斯坦境内的水量呈增加趋势,但由于普恰盖水库截流蓄水,导致伊犁河下游水量急剧减少.巴尔喀什湖流域农业用地从1928年左右开始到现在经历了"增加—减少—增加—平稳"的变化过程,伊犁河中下游哈萨克斯坦的农业用地扩张和水利工程建设造成了伊犁河入湖水量减少,是巴尔喀什湖水位下降的根本原因.研究结果可为中哈跨境流域水资源合理利用、生态环境保护等提供一定参考.  相似文献   

2.
新疆巴里坤湖十五万年来古水文演化序列   总被引:14,自引:3,他引:11       下载免费PDF全文
通过巴里坤湖钻孔岩芯沉积相分析、年代学测定、粒度分析、碳酸盐及其稳定同位素测定、孢粉分析等综合研究,建立了巴里坤湖沉积岩芯剖面十五万年来的时间序列、湖水位变化的古水文演化序列,分辨出十五万年来经历的高湖面阶段和低湖面阶段。低湖面阶段对应于冰期阶段,在冰期时,降水主要积累于山地,进入湖泊的水量较少,湖水位降低;高湖面阶段对应于间冰期的到来,山地冰川融化,湖水位迅速上升,但很快达到新的平衡,水位保持稳定。  相似文献   

3.
西藏纳木错过去200年来的环境变化*   总被引:6,自引:6,他引:6       下载免费PDF全文
文章通过纳木错浅钻沉积硅藻研究,结合青藏高原湖泊现代硅藻-电导率转换函数,对过去200年来的湖水盐度(电导率)变化进行了定量重建。纳木错在小冰期冷期为淡水环境;小冰期结束后,湖水盐度开始增加;至20世纪60年代中期以来,盐度增加幅度更加明显。过去100年来湖水盐度的增加与钻孔粒度变化所揭示的入湖径流量的增多,反映了增温背景下湖泊水文的响应特点。温度的上升,一方面引起了流域冰雪融水补给量的增加,但另一方面,湖泊水量平衡明显偏负,说明小冰期结束以来,尤其是最近40年,冰融水的增加并不足以弥补湖泊水量的负平衡。由此提出蒸发量在湖泊水量平衡中起重要作用,温度是影响湖泊水文变化的关键因子。区域湖泊综合对比结果进一步表明,不同湖泊盐度和水文变化趋势一致,反映了封闭湖泊对区域气候变化的共同响应特点。  相似文献   

4.
鄱阳湖高水还湖对水位影响的计算与分析   总被引:4,自引:0,他引:4  
闵骞 《水文》2002,22(3):40-45
根据高水还湖对湖水位影响的物理机制,建立了以湖泊水量平衡方程为基础,包含高水还湖减少入湖水量、加大湖盆容积、降低湖水位、减小出湖流量等因素的湖水位效应计算模型。计算不同内涝条件下高水还湖的水位效应值,揭示了水位效应与圩区内涝的关系。  相似文献   

5.
青藏高原中部兹格塘错1970年来的湖面变化及原因初探   总被引:3,自引:1,他引:2  
通过对位于青藏高原中部受人类活动影响微弱的兹格塘错1970-2006年湖面变化的分析,探讨了湖泊对气候变化的响应.从1970年的地形图,1977年MSS影像,1992年TM影像和2001年ETM+影像中提取的湖泊面积显示,湖泊有逐渐增大的趋势.1999年8月和2006年9月水深2 m处湖水中稳定离子K+和Cl-的浓度对比表明,湖水体积在这期间是增大的.近年来湖面持续上涨也得到了1998年8月,2002年8月和2006年9月野外实地考察的证实.通过分析兹格塘错附近那曲、班戈、安多气象站的记录发现,该区温度自1965年来呈明显上升趋势,表现在夏季(5-10月)和冬季(11月到次年4月)温度均有明显增高,冬季温度增幅更大.该区1965年来降水量也有增加的趋势,表现在夏季和冬季降水均有增加,但是夏季降水量增加幅度更明显.结合青藏高原1970年来最大蒸散和干燥度的变化,夏季和冬季降水量增加而蒸发量下降是导致兹格塘错湖面增大、湖水水位增高的主要原因.  相似文献   

6.
分析了羊卓雍错湖水19742010年间的水位变化,特别是过去几年湖水水位的大幅度下降,并根据流域内浪卡子县气象数据分析了控制湖水水位变化的主要原因。计算了流域内降水累积距平及蒸发量累积距平,并与湖泊水位的年际变化进行了对比分析。研究结果表明,2005年以前羊卓雍湖湖水的水位年际变化与流域降水累积距平变化一致,而与蒸发量累积距平变化相反,降水与蒸发量变化可以解释93%的湖水水位变化。20052010年湖水水位变化偏离了降水量的变化趋势。分析表明,气候的变化远不能解释羊卓雍湖水位的快速下降,可能人为活动的影响,是导致羊卓雍湖水位下降的主要原因。  相似文献   

7.
呼伦湖水面蒸发及水量平衡估计   总被引:4,自引:1,他引:4  
李翀  马巍  叶柏生  廖文根 《水文》2006,26(5):41-44
为重建水文资料缺乏的呼伦湖流域的水文序列,本研究基于长期的气象观测记录,采用彭曼公式估计了湖泊的水面蒸发,并建立一个两参数月水量平衡模型模拟湖周的入流,通过水量平衡计算,模拟了湖泊月水量、水位变化,重建了42年(1961-2002)的呼伦湖区水文序列。模拟的水位变化趋势与实际比较接近,误差较小,模拟精度较好。所重建的42年呼伦湖水文序列,可为该区域的水资源评价管理提供科学依据。  相似文献   

8.
刘瑾  王永  李廷栋  董进  江南  汤文坤 《古地理学报》2016,18(6):1044-1052
内蒙古中东部位于东亚夏季风过渡区,对气候变化响应敏感。广泛发育的湖泊沉积物提供了全新世以来的环境变化的理想材料。湖岸沉积物直接记录的古水位,与高分辨率的湖心钻孔记录相结合,有助于全面认识古气候的变化历史和湖面波动的定量重建。运用AMS14C测年和GPS、DEM及1︰5万地形图等相结合的方法确定了达里湖北侧湖岸堤的年代和高程,并结合湖岸堤剖面的沉积序列指示的湖面变化过程,重建了12.5 cal ka BP以来达里湖的波动历史。12.5 cal ka BP,达里湖湖面海拔高度约为1253,m,至12.3 cal ka BP湖面经历短暂上升,至海拔1266,m左右;之后湖面下降,至全新世早期(11.2 cal ka BP),水位降至1254,m左右;随后湖面开始逐步上升,10.7 cal ka BP湖面水位稳定在1274,m左右;全新世中期湖面继续上升至某一高度(至少在1291,m)后,于全新世晚期4.8 calka BP 湖面高度降至1279,m,并于4.6 cal ka BP湖面继续下降至1275,m的高度。通过对比湖心钻孔记录的湖泊波动历史以及区域湖泊沉积记录,认为达里湖的水位波动受东亚季风活动的影响,具有区域的一致性。达里湖的水位变化较区域内的其他湖泊更为强烈,认为除了受区域气候变化的影响外,达里湖全新世晚期的湖面下降可能还与区域内强烈的构造活动和西拉木伦河溯源侵蚀导致区域水系的改变有关。  相似文献   

9.
内蒙古中东部位于东亚夏季风过渡区,对气候变化响应敏感。广泛发育的湖泊沉积物提供了全新世以来的环境变化的理想材料。湖岸沉积物直接记录的古水位,与高分辨率的湖心钻孔记录相结合,有助于全面认识古气候的变化历史和湖面波动的定量重建。运用AMS14C测年和GPS、DEM及1︰5万地形图等相结合的方法确定了达里湖北侧湖岸堤的年代和高程,并结合湖岸堤剖面的沉积序列指示的湖面变化过程,重建了12.5cal ka BP以来达里湖的波动历史。12.5 cal ka BP,达里湖湖面海拔高度约为1253m,至12.3 cal ka BP湖面经历短暂上升,至海拔1266m左右;之后湖面下降,至全新世早期(11.2 cal ka BP),水位降至1254m左右;随后湖面开始逐步上升,10.7 cal ka BP湖面水位稳定在1274m左右;全新世中期湖面继续上升至某一高度(至少在1291m)后,于全新世晚期4.8 cal ka BP湖面高度降至1279m,并于4.6 cal ka BP湖面继续下降至1275m的高度。通过对比湖心钻孔记录的湖泊波动历史以及区域湖泊沉积记录,认为达里湖的水位波动受东亚季风活动的影响,具有区域的一致性。达里湖的水位变化较区域内的其他湖泊更为强烈,认为除了受区域气候变化的影响外,达里湖全新世晚期的湖面下降可能还与区域内强烈的构造活动和西拉木伦河溯源侵蚀导致区域水系的改变有关。  相似文献   

10.
长江中下游河湖水量交换过程   总被引:1,自引:0,他引:1       下载免费PDF全文
长江中下游的河湖水交换关系典型且复杂,为描述河湖水量相互交换过程,提出了河湖水量交换系数的概念,即某一时段内由支流汇入湖泊的径流量与湖泊泄入干流径流量的比值,表示河湖水量交换的激烈程度。根据水量平衡原理推导出河湖水量交换系数计算的经验公式,并把河湖水量交换过程分为3种状态:“湖分洪”、“稳定”和“湖补河”。近60多年来河湖水交换系数年际变化趋势表明:洞庭湖与长江干流的水交换状态从“湖分洪”到“稳定”,再到“湖补河”状态发展;鄱阳湖与长江干流的水交换系数在稳定状态附近波动,河湖水交换状态无明显趋势性变化,河湖系统演化稳定。河湖水交换系数与长江干流径流量相关性良好,而与湖泊支流径流量相关性较差,表明长江干流径流量的大小是河湖水量交换过程的主控因素。  相似文献   

11.
巴尔喀什湖水量平衡研究   总被引:8,自引:3,他引:5  
巴尔喀什-阿拉湖流域是中亚地区重要和独特的景观生态系统,巴尔喀什湖是该区域的核心,其水位变化作为巴尔喀什湖流域生态系统及其保护的主要指标,向来备受世人关注.研究巴尔喀什湖水量平衡,对合理确定巴尔喀什湖生态系统保护目标及保护措施,具有十分重要的理论与现实意义.在明晰巴尔喀什湖水系、水位影响因素的基础上,构建了巴尔喀什湖水...  相似文献   

12.
2002年前后博斯腾湖水位变化及其对中亚气候变化的响应   总被引:8,自引:1,他引:7  
王润  孙占东  高前兆 《冰川冻土》2006,28(3):324-329
通过对湖泊补给水量的分析,博斯腾湖2002年前后水位由高向低的转折变化是由开都河径流变化造成的.对2002年前后天山南北其它主要湖泊的水位和河流径流变化作了比较分析结论.由于山区河源径流补给组成不同,表现出在同一中亚气候背景下,即2002年前后该地区气温降低而降水东西各有差异,使得天山西段受降水补给为主的河流,2002年后径流仍有增加,具体反映在伊塞克湖、巴尔喀什湖等水位持续上升和托什干河等径流的偏丰;而天山东部的开都河,受降水减少和气温降低对冰川变化的双重影响,2003年以来径流明显减少,导致博斯腾湖的水位持续下降.  相似文献   

13.
近期博斯腾湖水位变化及其原因分析   总被引:32,自引:5,他引:27  
新疆博斯腾湖1987年以来湖泊水位的变化(上升)与主要补给河流开都河径流量的变化有直接关系, 而这与发源于天山中段降水和高山冰雪融水的河流, 受到气候变化影响很大有关. 全球变化研究结果显示, 中亚干旱区是全球温度上升幅度较大的地区. 当地的气象资料表明, 过去20 a年平均温度明显升高的趋势, 对水资源储量和补给来源影响深远.  相似文献   

14.
气候变暖背景下极端气候对青海祁连山水文水资源的影响   总被引:3,自引:2,他引:1  
利用青海祁连山区极端气候要素和青海湖、哈拉湖及主要河流的水文资料,研究表明:冷夜日数(10%)呈显著减少趋势,暖夜日数(90%)呈显著增加趋势;年大风日数显著减少;年降水量21世纪初增加趋势最为显著并发生突变,降水量增加幅度中西段大于东段;≥ 5 mm、≥ 10 mm、≥ 25 mm年降水日数呈显著增加趋势,进入21世纪后更为明显,而≥ 0.1 mm年降水日数呈减少趋势;年平均大风日数与湖泊水位、河流流量变化呈负相关,大风天气的减少,可以缓解湖面和土壤因蒸发而导致的水分损失,对植被的改善可增加径流的产生,流入湖泊的流量增加;降水量与湖泊水位、河流流量呈正相关,受21世纪降水量增加的影响青海湖水位逐年上升,共上升1.67 m,达到20世纪70年代末的水位,中西部主要河流流量近几年也达到最大值,而东段流量增加不明显;祁连山区≥ 5 mm、≥ 10 mm、≥ 25 mm年平均降水量与湖泊、河流流量变化呈正相关,各量级年降水量对湖泊水位、河流流量的增加贡献显著。  相似文献   

15.
巴尔喀什湖是中亚干旱区最大的湖泊生态系统之一,其保护对中亚地区具有重要意义,但同时对相关区域也产生了较大的水资源压力.分析其水量平衡,对提出合理的保障措施具有重要的理论与实践价值.根据巴尔喀什湖形态、水文特征,在分析识别其水量平衡主要影响因素与作用机制的基础上,根据水量平衡原理与东西湖分治的思想,反演了1936-200...  相似文献   

16.
气候变化对天山伊犁河上游河川径流的影响   总被引:19,自引:7,他引:19  
用水量平衡模型研究气候变化对天山降雪比较丰富的伊犁河上游山区河川径流的影响。研究表明,作为西北干旱区水资源主要形成区的山区,由于气温较低和降水丰富,未来气候变化对水资源量的影响将主要取决于降水量的变化,气温升高的影响相对较小。气候的变暖,一方面使径流的年内分配发生变化,月径流峰值减少,时间提前,春季径流增加,而其余季节径流减少,其中夏季减少最多;另一方面将使年径流量的变率增大,这对水资源的利用极淡  相似文献   

17.
全球变暖对新疆水循环影响分析   总被引:5,自引:3,他引:2  
冯思  黄云  许有鹏 《冰川冻土》2006,28(4):500-505
随着全球气候变暖,新疆地区降水量、冰川数量、径流量、地下水位等自20世纪80年代中后期以来发生了很大的变化.通过对61个国家水文、气象站点20世纪50年代到2000年的降水量、气温、冰川、径流量、湖泊水量、地下水位的变化资料分析,探讨了新疆水循环的变化趋势和原因.结果表明:新疆地区降水量增加主要是由于全球水循环速度加快引起的.通过分析新疆高山冰川的变化,试图揭示全球气候持续变暖对新疆乃至整个西北地区水资源可能造成的巨大影响.  相似文献   

18.
青藏高原湖泊是气候变化的重要指示器,20世纪90年代中期以来,在暖湿化环境下降水增多和冰川冻土加速融化导致的湖泊扩张是青藏高原最为突出的环境变化特征。值得注意的是,湖泊水位变化的空间分布特征和西风带及印度季风带影响区的降水量变化具有高度的空间一致性。严酷的自然环境导致对青藏高原内陆湖泊的实地观测变得难以企及,而遥感技术的发展正好可以克服以上局限,该技术已经成为青藏高原湖泊变化监测的主要研究手段。本文围绕遥感监测技术与方法,综述了青藏高原湖泊面积、水量、冰物候、水体参数以及水量平衡定量估算等方面的研究进展。部分研究以流域为尺度应用多源遥感与水文模型进行水量平衡定量评估,结果表明青藏高原内陆地区的湖泊水量增加的主要贡献因素是降水增多,而冰川融化、冻土消融及其他因素的贡献程度却相对较小。当前,学术界一般认为:大尺度的降水年代际变化是青藏高原湖泊近期变化的主要原因,而冰川冻土加速消融又进一步加速湖泊扩张或抑制了部分湖泊收缩。过去,关于青藏高原湖泊变化的气候响应机制研究大多停留在对降水、蒸发、温度、风速、冰冻圈融化等气候因素的定性描述上;现在,在湖泊水量平衡方面,越来越多的研究开始在定量化方面取得进展;将来,随着更多遥感数据的开放共享,以及更多水文与气象站点的投入使用,将为青藏高原湖泊的水量平衡定量研究提供更好的数据条件。  相似文献   

19.
Todhunter  P. E. 《Natural Hazards》2021,106(3):2797-2824

Devils Lake, a terminal lake in northeast North Dakota (USA), has experienced catastrophic flooding since 1993. From January 31, 1993, to December 31, 2014, lake level rose from 433.62 to 442.44 m, lake area expanded from 179.9 to 653.5 km2, and lake volume increased from 0.70 to 3.80 km3. More than $1 billion ($USD) has been spent in government payments to mitigate direct, primary, tangible flood damages. This paper provides a case study of the hydrological basis of the Devils Lake flood disaster. The unique geomorphic setting, paleoclimatic record, and hydroclimatic conditions of the region are summarized, and a wide range of hydroclimatic data is examined to provide a broad understanding of the physical basis of the flood disaster. The primary cause of the disaster was a transition to a sustained wetter climate that resulted in a dramatic response in basin hydrological variables in 1993. The transition from a long-term dry period to a long-term wet period caused the lake water budget to begin to change from an atmosphere-controlled water budget dominated by precipitation input to an amplifier lake water budget dominated by surface runoff input to the lake. Other important hydrological factors include a nonlinear precipitation–runoff relationship following the long-term drought, fill-spill and fill-merge hydrological behavior that is characteristic of wetland complexes, an increase in the lake area-to-basin area ratio, and the critical role of frozen soils in controlling infiltration and runoff production of spring snowmelt. Engineering works to manage lake volume through two outlets have reduced, but not entirely eliminated, future flood risk.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号