首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding the reactor cavity during a severe accident. As part of a joint Korean–United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boiling experiments were performed in the subscale boundary layer boiling (SBLB) facility at the Pennsylvania State University using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady-state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady-state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.  相似文献   

2.
In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by most operating nuclear power plants and advanced light water reactors (ALWRs), AP600, AP1000, etc. External reactor vessel cooling (ERVC) is a novel severe accident management for IVR analysis. In present study, IVR analysis code in severe accident (IVRASA) has been developed to evaluate the safety margin of IVR in AP1000 with anticipative depressurization and reactor cavity flooding in severe accident. For, IVRASA, the point estimate procedure has been developed for modeling the steady-state endpoint of two core melt configurations: Configuration I and Configuration II. The results of benchmark calculations of AP600 by IVRASA were consistent with those of the UCSB and INEEL. Then, IVRASA is used to calculate the heat transfer process caused by two core melt configurations of AP1000. The results of calculations of Configuration I indicate that the heat flux remains below the critical heat flux (CHF), however, the sensitivity calculations show that the heat flux in the metallic layer could exceed the CHF because of the focusing effect due to the thin metallic layer. On the other hand, the results of calculations of Configuration II suggest that the thermal failure of the lower head at the bottom location is highly unlikely, but the heat flux in light metallic layer could be higher than that of base case due to the portion of metal partitioning into the lower head. This work also investigated the effect of the uncertainties of the CHF correlations on the analysis of IVR.  相似文献   

3.
熔融物堆内滞留(IVR)是一项核电厂重要的严重事故管理措施,通过将熔融物滞留在压力容器内,以保证压力容器完整性,并防止某些可能危及安全壳完整性的堆外现象。对于高功率和熔池中金属量相对不足的反应堆,若下封头形成3层熔池结构,则其顶部薄金属层导致的聚焦效应可能对压力容器完整性带来更大的威胁。本文考虑通过破口倒灌及其他工程措施实现严重事故下熔池顶部水冷却,建立熔池传热模型,分析顶部注水的带热能力,建立事件树,分析顶部注水措施的成功概率及IVR的有效性。结果表明,通过压力容器内外同时水冷熔融物,能显著增强IVR措施的有效性。  相似文献   

4.
通过反应堆压力容器外部冷却(ERVC)实现熔融物堆内滞留(IVR)技术是核电厂严重事故缓解的重要措施之一。在本文的研究中,建立了二维切片式、全尺寸的试验台架FIRM,开展严重事故条件下反应堆压力容器ERVC-临界热流密度(CHF)试验研究。试验采用去离子水作为试验工质,获得了反应堆压力容器下封头ERVC过程的CHF限值。研究了真实表面材料对CHF的影响及其影响机理,讨论了在去离子水下表面材料SA508 Gr3. Cl.1钢的老化效应。本试验研究对于认识反应堆压力容器IVR-ERVC条件下的CHF行为、提高反应堆压力容器安全性有重要意义。  相似文献   

5.
熔融物堆内滞留条件下压力容器变形   总被引:2,自引:0,他引:2  
熔融物堆内滞留(In-Vessel Retention,IVR)已经成为第三代反应堆一项关键的严重事故缓解策略,而压力容器外部冷却(External Reactor Vessel Cooling,ERVC)技术则是保证IVR得以成功实施的关键。当发生堆芯熔化时,高温熔融物对压力容器(Reactor Pressure Vessel,RPV)下封头的热冲击会导致RPV壁面和由其构成的外部冷却通道的形状发生变化,使局部传热恶化,进而造成IVR的失效。因此,有必要对IVR条件下RPV壁面的变形进行研究。本文利用有限元软件ANSYS对RPV进行了几何建模、温度场分析和力学场分析。结果表明,在RPV外部实现冷却、内部实现泄压的前提下,壁面变形为13.85-18.75 mm。在1 MPa内压的作用下,高温蠕变会使壁面变形随时间增大,但其增量有限。热膨胀是造成壁面变形的主要因素。  相似文献   

6.
通过压力容器外部冷却(ERVC)以实现堆内熔融物滞留(IVR)作为反应堆严重事故缓解管理的一项重要举措一直以来广泛受到关注和研究。本文使用严重事故分析程序MELCOR,从瞬态角度对大型先进压水堆进行了IVR-ERVC相关研究。过程中重点关注了堆芯熔毁和重新定位,熔池形成、生长及其传热过程,并且对压力容器外部流动传热进行了分析。MELCOR计算所得下封头热流密度分布的瞬态结果与临界热流密度(CHF)比较和分析表明,1700 MWe大功率压水堆发生严重事故后在IVRERVC条件下能够保证压力容器的完整性,即,IVR-ERVC能够有效带出下封头熔融物的衰变热量,缓解严重事故后果。  相似文献   

7.
One strategy for severe accidents is in-vessel retention (IVR) of corium debris. In order to enhance the capability of IVR in the case of a severe accident involving a light-water reactor, methods to increase the critical heat flux (CHF) should be considered. Approaches for increasing the IVR capability must be simple and installable at low cost. Moreover, cooling techniques for IVR should be applicable to a large heated surface. Therefore, as a suitable cooling technology for required conditions, we proposed cooling approaches using a honeycomb porous plate for the CHF enhancement of a large heated surface in a saturated pool boiling of pure water. In this paper, CHF enhancement by the attachment of a honeycomb-structured porous plate to a heated surface in saturated pool boiling of a TiO2-water nanofluid was investigated experimentally under atmospheric pressure. As a result, the CHF with a honeycomb porous plate increases as the nanoparticle concentration increases. The CHF is enhanced significantly up to 3.2 MW/m2 at maximum upon the attachment of a honeycomb porous plate with 0.1 vol.% nanofluid. To the best of the author's knowledge, under atmospheric pressure, a CHF of 3.2 MW/m2 is the highest value for a relatively large heated surface having a diameter exceeding 30 mm.  相似文献   

8.
反应堆压力容器外部冷却(ERVC)是实现熔融物堆内滞留(IVR)的重要方案之一,而反应堆压力容器(RPV)外壁面的临界热流密度(CHF)决定了ERVC冷却能力的限值。为此建立小型CHF试验装置,并采用RPV用SA508钢制作试验块加热表面。以去离子水为试验工质,开展池沸腾下朝向CHF试验,研究真实RPV表面材料在不同倾角和过冷度条件下的CHF特性,及其老化效应对CHF的影响。结果表明:SA508钢表面极易氧化生锈,其CHF较不易生锈的铜和不锈钢表面要高;SA508钢表面CHF随倾角的增大而增加,但在30°附近存在转折,转折角以下范围内的CHF随倾角增加趋势不明显;CHF随过冷度的增加而增加,且基本呈线性变化。本试验有助于进一步认识RPV外壁面的CHF行为,为后续开展CHF增强方法研究奠定基础。  相似文献   

9.
The external reactor vessel cooling (ERVC) is one of the important methods to achieve the in-vessel retention (IVR), while the critical heat flux (CHF) on the outside wall of the reactor pressure vessel (RPV) decides the maximum heat removal capacity of ERVC. In present work, a small CHF test facility was established. The test surface was made of SA508 steel which was the same surface material of prototype RPV. The deionized water was used as coolant in downward-facing CHF test under pool boiling condition. The influence of the real RPV material surface at different inclination angles and sub-cooling conditions on the CHF characteristics was studied. The influence of aging on CHF was also studied. The results show that the SA508 steel surface is easily oxidized, so its CHF is higher than that of copper and stainless steel surfaces. The CHF of SA508 steel surface increases with inclination angle, but there is a turning point near 30° and the CHF below the turning angle has no obvious trend with the increase of inclination angle. The CHF increases with the sub-cooling, and it shows linear growth characteristics. The test results provide a further understanding of the CHF behavior on the RPV outside wall and lay the foundation for future research work on CHF enhancement methods.  相似文献   

10.
基于SCDAP/RELAP5程序建立了用于熔融物压力容器内滞留(IVR)瞬态分析的系统简化模型,通过对模块式小型堆IVR过程的瞬态计算与分析,初步探索了IVR策略实施过程中压力容器下封头的瞬态热负荷特性。SCDAP/RELAP5程序的计算结果表明,利用外部冷却实施IVR策略的瞬态传热特性可分为熔融物注入之初的激烈传热阶段和熔融物硬壳形成之后的准稳态传热阶段。模块式小型堆的IVR瞬态分析表明,瞬态过程中的热流密度峰值不会达到临界热流密度,最终形成的稳定熔融池传热具有很大的安全裕量。研究同时发现SCDAP/RELAP5程序用于IVR分析时在模型上存在一定的不足。  相似文献   

11.
Studies reported in the past on critical heat flux (CHF) are mostly limited to vertical flow, large channel diameter, high pressure and high mass flux. Only few investigations are reported in the literature for horizontal flow CHF especially under low pressure and low flow conditions. Hence, predictive methods of CHF for horizontal flow are scarce. There is a need for understanding CHF in horizontal flow under low pressure and low flow conditions because they are commonly encountered in nuclear reactor fuel channels of pressurized heavy water reactor (PHWR) under loss of coolant accidental (LOCA) conditions. The present work investigates CHF of horizontal flow for low flow rates (mass flux of 100–400 kg/m2 s) at nearly atmospheric pressure conditions. Parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm), length (0.45 m and 0.8 m) and a inlet temperature of 32 °C. The first occurrence of ‘red hot’ spot on the test section is considered as the onset of critical heat flux condition in the present work. Experimental results obtained are compared with Groeneveld et al. (2007) look up table data for vertical flow after applying correction factor given by Wong et al. (1990). The deviation of experimental CHF data from those predicted using Groeneveld et al. (2007) look up table and Wong et al. (1990) correction factor is more than 50%.  相似文献   

12.
为评价氧化铝纳米流体相对于纯水工质对球形下封头熔融物滞留(IVR)能力边际的拓展程度,采用基于气泡力平衡的氧化铝纳米流体临界热流密度(CHF)机理模型和壁面热通量拆分CHF模型计算球形下封头外表面纳米流体CHF。利用熔融物堆内滞留分析软件CISER开展衰变热分布抽样计算,得到下封头壁面CHF随倾角变化的随机分布,并将其与纳米流体CHF模型的理论值相比,以CHF比值小于1作为IVR成功准则,研判纳米流体对IVR能力边际拓展的影响程度。研究结果表明,若不对下封头内外传热构成采取任何优化措施,仅采用纳米流体替代纯水工质,压水堆核电厂的IVR能力边际能够拓展至1300 MW额定电功率水平。   相似文献   

13.
In-vessel retention (IVR) consists in cooling the corium contained in the reactor vessel by natural convection and reactor cavity flooding. This strategy of severe accident management enables the corium to be kept inside the second confinement barrier: the reactor vessel. The general approach which is used to study IVR problems is a “bounding” approach which consists in assuming a specified corium stratification in the vessel and then demonstrating that the vessel can cope with the resulting thermal and mechanical loads. Thermal loading on the vessel is controlled by the convective heat transfer inside the molten corium in the lower head. If there is no water in the vessel and if the corium pool is overlaid by a liquid steel layer, then the heat flux might focus on the vessel in front of the steel layer (“focusing effect”) and exceed the dry-out heat flux (CHF or DHF). One of the critical points of these studies is linked to the determination of the height of the molten steel layer that can stratify above the oxidic pool. The MASCA experiments have highlighted that part of molten steel may stratify under the oxidic corium which reduces the thickness of the steel layer on top of the pool. This behavior can be explained by chemical interaction between the oxide and metallic phases of the pool which confirms that these materials cannot be treated as inert species. Following these conclusions, a methodology which couples physicochemical effects and thermalhydraulics has been developed to address the IVR issue. The main purpose of this paper is to present this methodology and its application for given corium mass inventories. Attention focuses on the influence of parameters such as the ratio U/Zr and oxidation ratio of zirconia. For a 1000 MW PWR, approximately 10 t of steel stratify at the bottom of the vessel for 40% Zr oxidation, and 25 t for 30% Zr oxidation. This leads to a 25–50% increase of the mass of molten steel that is required for avoiding vessel melt-through.  相似文献   

14.
Nanofluids, colloidal dispersions of nanoparticles, exhibit a substantially higher critical heat flux (CHF) compared to water. As such, they could be used to enhance the in-vessel retention (IVR) capability in the severe accident management strategy implemented by certain light-water reactors. It is envisioned that, at normal operating conditions, the nanofluid would be stored in dedicated storage tanks, which, upon actuation, would discharge into the reactor cavity through injection lines. The design of the injection system was explored with risk-informed analyses and computational fluid dynamics. It was determined that the system has a reasonably low failure probability, and that, once injected, the nanofluid would be delivered effectively to the reactor vessel surface within seconds. It was also shown analytically that the increase in decay power removal through the vessel using a nanofluid is about 40%, which could be exploited to provide a higher IVR safety margin or, for a given margin, to enable IVR at higher core power. Finally, the colloidal stability of a candidate alumina-based nanofluid in an IVR environment was experimentally investigated, and it was found that this nanofluid would be stable against dilution, exposure to gamma radiation, and mixing with boric acid and lithium hydroxide, but not tri-sodium phosphate.  相似文献   

15.
为确定衰变热对高功率压水堆熔融物堆内滞留(IVR)能力边际的影响,采用显著性水平评价与抽样失效率相结合的评价方式,对IVR能力边际进行评价。利用熔融物堆内滞留分析工具CISER开展抽样计算,获得不同核电厂电功率水平、不同衰变热分布参数条件下的下封头壁面热流密度峰值与当地临界热流密度(CHF)的比值,对热流密度比分别开展显著性水平估算与失效率计算,根据小于局部CHF的下封头熔穿准则,判定IVR措施是否有效,以获得IVR能力边际。研究结果表明,若不对下封头内外传热构成进行任何优化措施,电功率超过1400 MW压水堆电厂不推荐单独使用IVR作为严重事故条件缓解措施。   相似文献   

16.
大型先进压水堆通过堆内熔融物滞留(IVR)策略来缓解严重事故后果以降低安全壳失效风险。其中堆腔注水系统(CIS)被引入来实现IVR。本文使用严重事故分析软件计算大型先进压水堆在冷管段双端断裂事故下的事故进程、热工水力行为、堆芯退化过程和下封头熔融池传热行为,评估能动CIS的事故缓解能力。计算结果表明,事故后72 h,下封头外表面热流密度始终低于临界热流密度(CHF),表明IVR策略有效。此外,计算分析了惰性气体、非挥发性和挥发性裂变产物的释放和迁移行为。计算发现,IVR下更多的放射性裂变产物分布在主系统内,壁面核素再悬浮形成气溶胶的行为被消除,安全壳壁面上沉积的核素被大量冷凝水冲刷进入底部水池。总体来说,IVR策略能更好地管理放射性核素分布,减小放射性泄漏威胁。  相似文献   

17.
If cooling is inadequate during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 accident. In such a case, concerns about containment failure and associated risks can be eliminated if it is possible to ensure that the lower head remains intact so that relocated core materials are retained within the vessel. Accordingly, in-vessel retention (IVR) of core melt as a key severe accident management strategy has been adopted by some operating nuclear power plants and planned for some advanced light water reactors. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements can provide sufficient heat removal to assure IVR for high power reactors (i.e., reactors with power levels up to 1500 MWe). Consequently, a joint United States/Korean International Nuclear Energy Research Initiative (I-NERI) has been launched to develop recommendations to improve the margin of success for in-vessel retention in high power reactors. This program is initially focussed on the Korean Advanced Power Reactor—1400 MWe (APR1400) design. However, recommendations will be developed that can be applied to a wide range of existing and advanced reactor designs. The recommendations will focus on modifications to enhance ERVC and modifications to enhance in-vessel debris coolability. In this paper, late-phase melt conditions affecting the potential for IVR of core melt in the APR1400 were established as a basis for developing the I-NERI recommendations. The selection of ‘bounding’ reactor accidents, simulation of those accidents using the SCDAP/RELAP5-3D© code, and resulting late-phase melt conditions are presented. Results from this effort indicate that bounding late-phase melt conditions could include large melt masses (>120,000 kg) relocating at high temperatures (3400 K). Estimated lower head heat fluxes associated with this melt could exceed the maximum critical heat flux, indicating additional measures such as the use of a core catcher and/or modifications to enhance external reactor vessel cooling may be necessary to ensure in-vessel retention of core melt.  相似文献   

18.
For severe accident assessment in a light water reactor, heat transfer models in a narrow annular gap between the overheated core debris and the reactor pressure vessel (RPV) are important for evaluating RPV integrity and emergency procedures. Using existing data, the authors developed heat transfer models on the average critical heat flux (CHF) restricted by countercurrent flow limitation (CCFL) and local boiling heat fluxes, and showed that the average CHF depended on the steam–water flow pattern in the narrow gap and that the local heat fluxes were similar to the pool boiling curve. We evaluated the validity of heat transfer models by simple calculations for ALPHA experiments performed at Japan Atomic Energy Research Institute. Calculated results showed that heat fluxes on the crust surface were restricted mainly by thermal resistance of the crust after the crust formation, and emissivity on the crust surface did not have much effect on the heat fluxes. The calculated vessel temperature during the heat-up process and peak vessel temperature agreed well with the measurements, which confirmed the validity of the average CHF correlation. However, the vessel cooling rate was underestimated mainly due to underestimation of the gap size.  相似文献   

19.
A fully natural circulation-based system is adopted in the decay heat removal system (DHRS) of an advanced loop type fast reactor. Decay heat removal by natural circulation is a significant passive safety measure against station blackout. As a representative of the advanced loop type fast reactor, DHRS of the sodium fast reactor of 1500 MWe being designed in Japan comprises a direct reactor auxiliary cooling system (DRACS), which has a dipped heat exchanger in the reactor vessel, and two units of primary reactor auxiliary cooling system (PRACS), which has a heat exchanger in the primary-side inlet plenum of an intermediate heat exchanger in each loop. The thermal-hydraulic phenomena in the plant under natural circulation conditions need to be understood for establishing a reliable natural circulation driven DHRS. In this study, sodium experiments were conducted using a plant dynamic test loop to understand the thermal-hydraulic phenomena considering natural circulation in the plant under a broad range of plant operation conditions. The sodium experiments simulating the scram transient confirmed that PRACS started up smoothly under natural circulation, and the simulated core was stably cooled after the scram. Moreover, they were conducted by varying the pressure loss coefficients of the loop as the experimental parameters. These experiments confirmed robustness of the PRACS, which the increasing of pressure loss coefficient did not affect the heat removal capacity very much due to the feedback effect of natural circulation.  相似文献   

20.
Numerical computations are performed for melting and natural convection in the liquefied region of a reactor vessel under external cooling to find more thermal margin for in-vessel retention. Existing typical experiment and calculations for gallium melting are used for the validation. The transient flow field in the liquefied region and the melt front movement analyzed are compared with those from finite-element and finite-volume methods. Reasonable agreements are achieved with respect to melt progression and flow configuration in the liquefied zone. A three-dimensional geometrical model for an azimuthally 3° angular section of the APR1400 pressurized water reactor vessel is prepared based on this verification, and a conservative heat flux profile from the corium inside with a concentrated heat flux from the metallic layer of 2.1 MW/m2, which is greater than maximum critical heat flux, is applied to the vessel model assuming constant exterior temperatures of 400 and 1000 K. The results show that even though the vessel inside heat flux is much greater than the critical heat flux, this does not intensively melt a vessel due to combined effects of latent heat absorption during the melting and the remaining heat spreading through the entire vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号