首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.  相似文献   

2.
3.
4.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain.Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10.Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.  相似文献   

5.
6.
Olfactory responses in Drosophila larvae have been traditionally studied in Petri dishes comprising a single peripheral odor source. In this behavioral paradigm, the experimenter usually assumes that the rapid diffusion of odorant molecules from the source leads to the creation of a stable gradient in the dish. To establish a quantitative correlation between sensory inputs and behavioral responses, it is necessary to achieve a more thorough characterization of the odorant stimulus conditions. In this video article, we describe a new method allowing the construction of odorant gradients with stable and controllable geometries. We briefly illustrate how these gradients can be used to screen for olfactory defects (full and partial anosmia) and to study more subtle features of chemotaxis behavior.Download video file.(188M, mp4)  相似文献   

7.
Foraging-stage third-instar larvae from most wild-type (normal) Drosophila melanogaster stocks are generally repelled by light. To identify factors that affect the larval photoresponse, we elucidated the effects of age, temperature, and time on the photoresponse of larvae from a wild-type Canton-S stock. In addition, we analyzed the larvae from the LI2 isofemale line, which are unresponsive to light in a photoassay. To determine whether LI2 larvae behave abnormally on other behavioral paradigms, in comparison to Canton-S controls, we tested larvae in taste and olfactory assays and observed them to determine whether they dispersed in a food source. Like Canton-S larvae, LI2 larvae and other isofemale lines whose progenitors were collected from the same natural population are responsive to taste and olfactory stimuli. Moreover, LI2 larvae disperse in the food source, as do Canton-S larvae tested in the dark. Larvae expressing parasbl mutations, which respond normally to light but not to chemical stimuli, do not disperse normally in the food source, suggesting that dispersal may be mediated by perception of chemical cues.  相似文献   

8.
Highlights? An invertebrate model for studying appetitive stimulus-driven feeding is presented ? Perception of appetitive olfactory inputs requires dopamine and NPF activities ? Dopamine neurons postsynaptic to projection neurons mediate odor-induced appetite ? NPF and its receptor NPFR1 define a gating mechanism in dopamine neurons  相似文献   

9.
10.
11.
Recent improvements in optical imaging, genetically encoded fluorophores and genetic tools allowing efficient establishment of desired transgenic animal lines have enabled biological processes to be studied in the context of a living, and in some instances even behaving, organism. In this protocol we will describe how to anesthetize intact Drosophila larvae, using the volatile anesthetic desflurane, to follow the development and plasticity of synaptic populations at sub-cellular resolution1-3. While other useful methods to anesthetize Drosophila melanogaster larvae have been previously described4,5,6,7,8, the protocol presented herein demonstrates significant improvements due to the following combined key features: (1) A very high degree of anesthetization; even the heart beat is arrested allowing for lateral resolution of up to 150 nm1, (2) a high survival rate of > 90% per anesthetization cycle, permitting the recording of more than five time-points over a period of hours to days2 and (3) a high sensitivity enabling us in 2 instances to study the dynamics of proteins expressed at physiological levels. In detail, we were able to visualize the postsynaptic glutamate receptor subunit GluR-IIA expressed via the endogenous promoter1 in stable transgenic lines and the exon trap line FasII-GFP1. (4) In contrast to other methods4,7 the larvae can be imaged not only alive, but also intact (i.e. non-dissected) allowing observation to occur over a number of days1. The accompanying video details the function of individual parts of the in vivo imaging chamber2,3, the correct mounting of the larvae, the anesthetization procedure, how to re-identify specific positions within a larva and the safe removal of the larvae from the imaging chamber.  相似文献   

12.
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies.  相似文献   

13.
在对患有欧洲幼虫腐臭病的蜜蜂幼虫进行细菌分离与培养时,获得1株未知菌株。从分离培养特性、形态学、生理生化特性和分子生物学等方面对该菌株进行了鉴定,得知该菌株为欧洲幼虫腐臭病的次生菌——粪肠球菌,属于肠球菌属,并暂定名为Enterococcus faecalis FB102。同时,得知根据该菌的分离培养特性可与欧洲幼虫腐臭病病原区分,并且将其单独接种蜜蜂幼虫后未能使幼虫患病。根据粪肠球菌较欧洲幼虫腐臭病病原易于分离培养的特性,得知通过对粪肠球菌的鉴定可以简化欧洲幼虫腐臭病的诊断过程,而且推测该菌株可能对人体健康有一定的影响。  相似文献   

14.
15.
Heavy metals are essential components of biological systems but are extremely toxic at high doses. As a result, we hypothesized that perception of heavy metals through gustation may exist in Drosophila melanogaster. In this study, we investigated the behavioral effects of iron, copper, zinc, and cadmium on D. melanogaster gustation, oviposition, and pupation-site selection. In addition, we examined the biological effects of heavy metals on the fruit fly survival and reproductive success. Our results illustrate that D. melanogaster responds behaviorally to the presence of high concentrations of heavy metals in food. All metals acted as repellents to the fruit flies at high doses, with the egg-laying and feeding of the female flies significantly decreasing. Furthermore, supplementation of heavy metals in the culture medium reduced survival to the adult stage and shortened the life span of adult flies. From these observations, we speculate that D. melanogaster avoidance behavior towards high concentrations of heavy metals may have a positive effect on their survival and reproductive success in nature, particularly in the presence of metal-contaminated food sources.  相似文献   

16.
《Current biology : CB》2019,29(11):1866-1876.e5
  1. Download : Download high-res image (294KB)
  2. Download : Download full-size image
  相似文献   

17.
This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k greater than ADH-F greater than ADH-S greater than simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S greater than ADH-F greater than ADH-71k greater than simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.  相似文献   

18.
19.
Sphingolipids comprise a complex group of lipids concentrated in membrane rafts and whose metabolites function as signaling molecules. Sphingolipids are conserved in Drosophila, in which their tight regulation is required for proper development and tissue integrity. In this study, we identified a new family of Drosophila sphingolipids containing two double bonds in the long chain base (LCB). The lipids were found at low levels in wild-type flies and accumulated markedly in Drosophila Sply mutants, which do not express sphingosine-1-phosphate lyase and are defective in sphingolipid catabolism. To determine the identity of the unknown lipids, purified whole fly lipid extracts were separated on a C18-HPLC column and analyzed using electrospray mass spectrometry. The lipids contain a LCB of either 14 or 16 carbons with conjugated double bonds at C4,6. The Delta(4,6)-sphingadienes were found as free LCBs, as phosphorylated LCBs, and as the sphingoid base in ceramides. The temporal and spatial accumulation of Delta(4,6)-sphingadienes in Sply mutants suggests that these lipids may contribute to the muscle degeneration observed in these flies.  相似文献   

20.
Identification of Drosophila MicroRNA targets   总被引:3,自引:0,他引:3       下载免费PDF全文
MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods. Here we screen conserved 3′ UTR sequences from the Drosophila melanogaster genome for potential miRNA targets. The screening procedure combines a sequence search with an evaluation of the predicted miRNA–target heteroduplex structures and energies. We show that this approach successfully identifies the five previously validated let-7, lin-4, and bantam targets from a large database and predict new targets for Drosophila miRNAs. Our target predictions reveal striking clusters of functionally related targets among the top predictions for specific miRNAs. These include Notch target genes for miR-7, proapoptotic genes for the miR-2 family, and enzymes from a metabolic pathway for miR-277. We experimentally verified three predicted targets each for miR-7 and the miR-2 family, doubling the number of validated targets for animal miRNAs. Statistical analysis indicates that the best single predicted target sites are at the border of significance; thus, target predictions should be considered as tentative until experimentally validated. We identify features shared by all validated targets that can be used to evaluate target predictions for animal miRNAs. Our initial evaluation and experimental validation of target predictions suggest functions for two miRNAs. For others, the screen suggests plausible functions, such as a role for miR-277 as a metabolic switch controlling amino acid catabolism. Cross-genome comparison proved essential, as it allows reduction of the sequence search space. Improvements in genome annotation and increased availability of cDNA sequences from other genomes will allow more sensitive screens. An increase in the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection. While the screen is likely to miss some targets, our study shows that valid targets can be identified from sequence alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号