首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Producing syngas and hydrogen from biofuels is a promising technology in the modern energy. In this work results of authors’ research aimed at design of supported membranes for oxygen and hydrogen separation are reviewed. Nanocomposites were deposited as thin layers on Ni–Al foam substrates. Oxygen separation membranes were tested in CH4 selective oxidation/oxi-dry reforming. The hydrogen separation membranes were tested in C2H5OH steam reforming. High oxygen/hydrogen fluxes were demonstrated. For oxygen separation membranes syngas yield and methane conversion increase with temperature and contact time. For reactor with hydrogen separation membrane a good performance in ethanol steam reforming was obtained. Hydrogen permeation increases with ethanol inlet concentration, then a slight decrease is observed. The results of tests demonstrated the oxygen/hydrogen permeability promising for the practical application, high catalytic performance and a good thermochemical stability.  相似文献   

2.
Hydrogen (H2) is a renewable, abundant, and nonpolluting source of energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Cyanobacteria produce H2 by breaking down organic compounds and water. In this study, biological H2 was produced from various strains of cyanobacteria. Moreover, H2 accumulation by Synechocystis sp. PCC 6803 was as high as 0.037 μmol/mg Chl/h within 120 h in the dark. The wild-type, filamentous, non-heterocystous cyanobacterium Desertifilum sp. IPPAS B-1220 was found to produce a maximum of 0.229 μmol/mg Chl/h in the gas phase within 166 h in the light, which was on par with the maximum yield reported in the literature. DCMU at 10 μM increased H2 production by Desertifilum sp. IPPAS B-1220 by 1.5-fold to 0.348 μmol H2/mg Chl/h. This is the first report on the capability of Desertifilum cyanobacterium to produce H2.  相似文献   

3.
Due to the increasingly serious environmental issues and continuous depletion of fossil resources, the steel industry is facing unprecedented pressure to reduce CO2 emissions and achieve the sustainable energy development. Hydrogen is considered as the most promising clean energy in the 21st century due to the diverse sources, high calorific value, good thermal conductivity and high reaction rate, making hydrogen have great potential to apply in the steel industry. In this review, different hydrogen production technologies which have potential to provide hydrogen or hydrogen-rich gas for the great demand of steel plants are described. The applications of hydrogen in the blast furnace (BF) production process, direct reduction iron (DRI) process and smelting reduction iron process are summarized. Furthermore, the functions of hydrogen or hydrogen-rich gas as fuels are also discussed. In addition, some suggestions and outlooks are provided for future development of steel industry in China.  相似文献   

4.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

5.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

6.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

7.
Mine sites are an ideal candidate to be decarbonised through the installation of variable renewables and storage. However, the operation of mine sites is dependent on many factors, including mineral price, which can vary significantly, leading to periods of inactivity. Therefore, for sites that have invested in renewable generation and storage, there exists a potential of stranded assets, which negatively impact their business case, potentially reducing investment in such equipment and, therefore, decarbonisation potential. The current study therefore has investigated the potential of using variable renewable energy coupled with thermal energy storage and biodiesel to supply heat to a mine site. With the base case established, the economic impact of lower or no mine operations on the net present value were evaluated. To reduce the impact of mine turndown, the potential of installing a hydrogen production facility in an effort to utilise the stranded assets was also undertaken. Preliminary results show the base case to be very economical with a net present cost of $151.4 M after 30 operational years. This value was reduced to $45.7 M and -$81.1 M if the mine only operated at half capacity or did not operate at all, respectively. The addition of hydrogen production powered by the installed variable renewable generation resulted in a slightly better net present value of $174.7 M if the mine operated as normal for 30 years. For the two other cases, the installation of an electrolyser resulted in significantly better results than if it had not been installed for the half capacity and no operation cases with net present costs of $90.9 M and -$7.1 M, respectively. A sensitivity analysis on these results show that while the hydrogen production only plays a minor role in site savings, a price of between $1.1/kg to $2.0/kg is necessary for the system to be economically justifiable. Therefore, the current study shows that the addition of an electrolyser can significantly reduce the risk of stranded assets in fully renewable mine sites by providing an additional revenue stream during mine turndown events.  相似文献   

8.
We have previously created and expressed a chimeric polypeptide joining the PsaC subunit of Photosystem I (PSI) to the HydA2 hydrogenase of Chlamydomonas reinhardtii and demonstrated that it assembles into the PSI complex and feeds electrons directly to the hydrogenase domain, allowing for prolonged photobiological hydrogen production. Here we describe a new PSI-hydrogenase chimera using HydA1, the more abundant and physiologically active endogenous hydrogenase of this alga. When the PsaC-HydA1 polypeptide was expressed in a C. reinhardtii strain lacking endogenous hydrogenases, it was assembled into active PSI-HydA1 complexes that were accumulated at a level ~75% that of PSI, which is ~5 times higher than the PSI-HydA2 chimera. Hydrogen production by the chimera could be restored after complete inactivation by oxygen without requiring new synthesis of PSI or the PsaC-HydA1 polypeptide, demonstrating that the complex could be repaired in vivo. The PSI-HydA1 chimera reduces ferredoxin in vivo to such an extent that it can drive the Calvin-Benson-Bassham cycle, leading to high O2 production rates, and eventually resulting in inactivation of the hydrogenase; use of media that drastically diminished CO2 fixation and an O2-scavenging material allowed H2 production for at least 4 days.  相似文献   

9.
A techno-economic study is performed for a large scale combustion-less hydrogen production process based on Steam Methane Reforming (SMR). Two process versions relying on different renewable heat sources are compared: (1) direct solar heating from a concentrated solar power system, and (2) radiation from resistive electrical heaters (electric SMR). Both processes are developed around an integrated micro-reactor technology, incorporating in a monolithic block most sub-processes needed to perform SMR. A baseline techno-economic scenario with low-cost feedstock and electricity, priced at $4/MMBtu and $0.04/kWh respectively, results in an LCOH of $2.31/kgH2 for solar SMR and $1.59/kgH2 for electric SMR. Results further show that solar SMR is currently more attractive economically than electric SMR coupled with distributed wind power systems, but electric SMR is more favourable in the long term due to the expected future improvements in the LCOE and capacity factor of wind power systems.  相似文献   

10.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

11.
There is a renewed interest in CeO2 for use in solar-driven, two-step thermochemical cycles for water splitting. However, despite fast reduction/oxidation kinetics and high thermal stability of ceria, the cycle capacity of CeO2 is low due to thermodynamic limitations. In an effort to increase cycle capacity and reduce thermal reduction temperature, we have studied binary zirconium-substituted ceria (ZrxCe1-xO2, x = 0.1, 0.15, 0.25) and ternary praseodymium/gadolinium-doped Zr-ceria (M0.1Zr0.25Ce0.65O2, M = Pr, Gd). We evaluate the oxygen cycle capacity and water splitting performance of crystallographically and morphologically stable powders that are thermally reduced by laser irradiation in a stagnation flow reactor. The addition of zirconium dopant into the ceria lattice improves O2 cycle capacity and H2 production by approximately 30% and 11%, respectively. This improvement is independent of the Zr dopant level, up to 25%, suggesting that above 10% Zr dopant level, Zr might be displaced during the high temperature annealing process. The addition of Pr and Gd to the binary Zr-ceria mixed oxide, on the other hand, is detrimental to H2 production. A kinetic analysis is performed using a model-based analytical approach to account for effects of mixing and dispersion, and to identify the rate controlling mechanism of the water splitting process. We find that the water splitting reaction at 1000 °C and with 30 vol% H2O, for all doped ceria samples, is surface limited and best described by a deceleratory power law model (F-model), similar to undoped CeO2. Additionally, we used density functional theory (DFT) calculations to examine the role of Zr, Pr, and Gd. We find that the addition of Pr and Gd induce non-redox active sites and, therefore, are detrimental to H2 production, in agreement with experimental work. The calculated surface H2 formation step was found to be rate limiting, having activation barriers greater than bulk O diffusion, for all materials. This agrees with and further explains experimental findings.  相似文献   

12.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

13.
Research focused on reusing lignocellulosic waste has been gaining ground, both for the purpose of obtaining energy from renewable sources, as well as for reducing feedstock costs and preventing environmental pollution. Despite being currently evaluated as a promising feedstock, large-scale application of lignocellulosic waste to obtain bioenergy is still scarce. One of the obstacles in terms of reusing it is its recalcitrant composition, often requiring pretreatment applications to break its fibers, increasing its bioavailability. In addition to the type of substrate, there are many operational parameters that may affect the process efficiency, including the type of reactor, temperature, pH, inoculum source, among others. Considering this, it is interesting to consider using statistical tools instead of “one-factor-at-a-time” methods for simultaneous optimization of these variables to increase the production of value-added compounds, such as Plackett-Burman screening design and Central Composite Rotational Design. In this context, this review aimed at compiling data regarding obtaining value-added compounds, focusing on bio-H2 and bio-CH4, from different lignocellulosic waste, such as sugarcane bagasse, citrus peel waste, coffee and cereal husks, brewer's spent grain, cocoa processing waste, sawdust, among others, considering the main operational parameters involved (temperature, pH, inoculum) and the type of pretreatment applied (physical, chemical and/or biological). The results described here may support future research on reusing residual lignocellulosic waste, in addition to elucidating the importance of different operational parameters to convert this waste into H2 and/or CH4.  相似文献   

14.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

15.
In the recent decade, the design of green hydrogen supply chains has been highlighted by researchers. Although, nowadays, responsiveness and social responsibility of networks could also be regarded as important measures that could attract more consumers to use hydrogen. Accordingly, this paper aims to improve the reliability and social responsibility of a hydrogen supply chain along with its economic and environmental aspects. To ensure the network's responsiveness, a new objective function is extended that maximizes the reliability of products' delivery. Also, a novel reliability approach is developed to immune the network against disruptions. As a new sustainability indicator, social factors are considered in the design of the hydrogen supply chain. Finally, a mixed possibilistic flexible programming method is proposed to assure the outputs' reliability. The results illustrate that by 28.4% enhancement in cost objective, the value of environmental, social, and reliability objectives are desirably improved 39.2%, 45.6%, and 24.1%, respectively.  相似文献   

16.
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems.  相似文献   

17.
In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm.  相似文献   

18.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

19.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

20.
The need for a rapid transformation to low-carbon economies has rekindled hydrogen as a promising energy carrier. Yet, the full range of environmental consequences of large-scale hydrogen production remains unclear. Here, prospective life cycle analysis is used to compare different options to produce 500 Mt/yr of hydrogen, including scenarios that consider likely changes to future supply chains. The resulting environmental and human health impacts of such production levels are further put into context with the Planetary Boundaries framework, known human health burdens, the impacts of the world economy, and the externality-priced production costs that embody the environmental impact. The results indicate that climate change impacts of projected production levels are 3.3–5.4 times higher than the allocated planetary boundary, with only green hydrogen from wind energy staying below the boundary. Human health impacts and other environmental impacts are less severe in comparison but metal depletion and ecotoxicity impacts of green hydrogen deserve further attention. Priced-in environmental damages increase the cost most strongly for blue hydrogen (from ~2 to ~5 USD/kg hydrogen), while such true costs drop most strongly for green hydrogen from solar photovoltaic (from ~7 to ~3 USD/kg hydrogen) when applying prospective life cycle analysis. This perspective helps to evaluate potentially unintended consequences and contributes to the debate about blue and green hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号