首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluid transport characteristics and level fluctuations in the pool of twin‐roll strip casting are studied using a water model and mathematical simulations. The level profile depends on the transport characteristics of the flow in the pool. A full scale water modeling experiment has been conducted to address the relationship between the fluid flow and level fluctuation in the narrow strip pool. The residence time of fluid at the ports of nozzle and nip points of caster are measured to evaluate the fluid flow uniformity in the caster. The level fluctuations are measured with wave gauge and sensors. Mathematical modeling is also established to help anticipate flow patterns in the pool and residence time at the exits of nozzle and caster. The results show that a strong jet flow impinging on the both sides of delivery system is generated and free surface oscillations increase at the most lateral ports of delivery system. The fluids are uniformly distributed along the direction of roll width at the narrow pool zone. The flow patterns are complex near side dams' zone. Calculated results are in good agreement with residence time and average wave height measurements.  相似文献   

2.
A three‐dimensional mathematical model has been developed to simulate turbulent fluid flow, heat transfer and solidification in the pool of a twin‐roll strip caster. A Darcy‐porosity approach was used to study the fluid flow within the mushy solidification zone in the pool. The effect of the heat transfer coefficient and permeability constant on the flow and solidification was also predicted. It was shown that an even flow and temperature distribution of the pool can be obtained by using a suitable feeding system. The heat transfer between the rolls and the solidifying metal has a big influence on the location of the solidification end point. The permeability of the mushy zone is a key factor which affects the flow and solidification in the twin‐roll strip casting process.  相似文献   

3.
Thin strip casting of steel through a twin‐roll caster demands the production of a perfectly homogeneous strip. This requirement is often not fulfilled due to non‐uniform heat contact between the solidifying strip and the rolls in the pool, which leads to temperature inhomogeneities visible at the strip behind the rolls (spottiness). The effect of spottiness is described from experimental observations in terms of contrast between dark and hot spots and of the mean diameter of the hot spots. The contrast is found to depend on roll material, surface roughness and roll velocity. A general dependence on the temperature difference between melt and rolls is observed. Calculations of heat transfer in the liquid and solid pool explain the hot‐dark‐temperature differences. The spottiness visible on the strip after leaving the rolls is initiated in the liquid pool, but it is enlarged by rolling contact differences in the solid pool. A model consideration based on thermally caused bending of the solidified material layers leads to a good coincidence with experimental data of the heat transfer coefficient at hot spots.  相似文献   

4.
《钢铁冶炼》2013,40(8):614-621
Abstract

The fluid transport characteristics and level fluctuations in the pool of twin roll strip casting were studied by physical simulation. The level profile depends on the transport characteristics of the flow in the pool. A 1∶1 water model of a twin roll strip caster was constructed based on the Froude number and Reynolds number similarity criteria to address the relationship between fluid flow and level fluctuations in the pool. The residence time of fluid in the pool and the nip points of the caster were measured to evaluate the uniformity in the caster in different operating conditions, and the level fluctuations and residence time were measured by wave gauge sensors and conductivity sensors respectively. The results show that free surface oscillations increase with the flowrate changing from 8·7 to 14·5 m3 h?1. Suitable outlet extension and outlet angle as well as holes in the bottom of the nozzle were beneficial to obtain a uniform distribution of the fluid along the direction of roll width at the pool zone.  相似文献   

5.
双辊薄带连铸熔池液面波动及流体混合特征模拟研究   总被引:4,自引:0,他引:4  
按照相似理论的原理,制作了模拟熔池内液面波动和流体混合的物理模型,分别采用超声波浪高仪和电导仪测定不同结构尺寸的不口和工艺条件下熔池内液面波动和流体混合状况,得到了水口结构尺寸和工艺参数对熔池注面波动和流体混合状况影响的定量关系,为双辊薄带连铸熔池伸入式水口的设计及操作工艺参数的优化提供了依据。  相似文献   

6.
《钢铁冶炼》2013,40(1):75-80
Abstract

Twin roll strip casting is regarded as a prospective technology offering many economic benefits. The control of fluid flow in the pool is, however, particularly difficult due to the high casting speed and small pool volume. In the present study, a three-dimensional mathematical model has been developed for the coupled analysis of fluid flow, heat transfer and solidification in the pool using the finite difference method. The characteristics of transport phenomena in the pool of a twin roll strip caster using a wedge type melt delivery system were analysed by numerical simulation. The results show that it is desirable for the wedge melt delivery system to provide the uniformity of flow and temperature in the pool to maintain the casting process and improve the strip quality.  相似文献   

7.
In continuous casting of steel, the casting rate is often controlled by a stopper rod placed in the tundish outlet where the submerged entry nozzle (SEN) tube begins. The flow pattern inside the SEN plays an important role for the bubble formation at the argon injection nozzle at the stopper rod tip. High flow velocities are reached in the small gap between stopper rod and the surrounding SEN walls, and a flow separation has to be expected after the gap due to the fast expansion of the cross section. According to theoretical considerations and to the simulations, the absolute pressure in the gap becomes very low for liquid steel, which can cause cavitation‐like effects. PIV‐flow measurements in a 1:1 scaled water model of the caster show a highly oscillating and asymmetric flow pattern with rapidly changing separation regions. The low pressure effects expected in liquid steel cannot be investigated on the water‐model due to the lower density of water. In numerical simulations of the water‐model, the choice of the turbulence model and the usage or the non‐usage of geometrical symmetries for the bound of the computational domain have a great impact on the resulting flow pattern and the accuracy of the predicted pressure drop. The results of various turbulence models are compared with results from measurements on a water‐model. It turns out that only a 3D model using advanced turbulence models (SST k‐ω or Large Eddy) produce acceptable results, while 2D simulations completely fail and the standard turbulence models (e.g. k‐ε) significantly underestimate the pressure drop even in a 3D simulation.  相似文献   

8.
Twinrollstripcastingisregardedasaprospec tivetechnologyofnearnetshapecontinuouscastingwhichisusedtoproducestripsof 1 6mm .Present ly ,thistechnologyisbecomingmaturedandcom mercialized .Thekeyproblemishowtoensurebothstrip qualityandsmoothoperation .Areasonabl…  相似文献   

9.
 以鞍山钢铁集团公司中薄板坯连铸机为研究对象,利用商业软件CFX44对结晶器内钢水流场和传热凝固进行了数值模拟,主要研究了三孔浸入式水口的冶金特征及其对结晶器内钢水流场和温度场的影响。结果表明,采用三孔浸入式水口可以优化结晶器内钢水流场和温度场,稳定坯壳发育和成形,防止拉漏。  相似文献   

10.
The steel industry is moving ahead along the di-rection of low cost,short process,good quality andlow capital investment. Strip continuous castingwhich can directly cast a thin strip with thicknessless than 10 mm from molten metal and can elimi-nate the expansive and complex hot rolling,is ex-pected to reduce both the capital investment and thecost of production as compared with the convention-al continuous casting process. Among various pro-cesses under development,the twin- roll strip cast-i…  相似文献   

11.
Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.  相似文献   

12.
Transient effects occur during both steady‐state casting as well as transient casting, e.g. a ladle change. These effects are caused by transient boundary conditions at the inlet of the tundish. A time‐dependent inlet temperature causes a free convection flow during steady‐state casting. During transient casting, such as during a ladle change, the mass flow at the inlet is time‐dependent and thus a transient flow develops. In general, transient flow is unwanted because transient flow means a change of conditions for the separation of non‐metallic particles. The analysis of the flow in the tundish is carried out by numerical as well as physical simulations. In this case experimental investigations are carried out on a water model. The results of laser optical investigations using Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (DPIV) serve as a validation of the numerical results. The numerical results are then used for the investigation of the thermal melt flow. The effects caused by a changing bath level during transient casting (ladle change) are investigated using the Volume‐of‐Fluid (VoF) model. Beyond this, the interaction between the melt and slag is taken into account, by using the three phase system melt‐slag‐air. In addition to the classical methods a new zonal approach is introduced in this paper. The integral balance localises high turbulence mixing regions as well as the development and intensity of back flows. The levelling of the momentum flux between the inlet and the outlet can also be described.  相似文献   

13.
以板坯连铸机结晶器为研究对象,采用数值模拟和水模试验相结合的研究方法,模拟了两种水口浇注条件下结晶器内温度、速度场分布以及钢中夹杂物上浮排除状况.试验发现,原有水口存在上循环弱、热交换慢、保护渣融化不均匀等缺点是铸坯出现表面纵裂纹和夹杂物上浮排除困难的主要原因;而新水口增强了结晶器内上循环速度,促进了钢中夹杂物的上浮.工业大生产应用结果表明,新水口能明显地降低板坯表面纵裂纹和改善铸坯洁净度.  相似文献   

14.
According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold’s upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.  相似文献   

15.
Fluid flow in the mold region of the continuous slab caster at Panzhihua Steel is investigated with 0.6-scale water model experiments, industrial measurements, and numerical simulations. In the water model, multiphase fluid flow in the submerged entry nozzle (SEN) and the mold with gas injection is investigated. Top surface level fluctuations, pressure at the jet impingement point, and the flow pattern in the mold are measured with changing submergence depth, SEN geometry, mold width, water flow rate, and argon gas flow rate. In the industrial investigation, the top surface shape and slag thickness are measured, and steel cleanliness including inclusions and the total oxygen (TO) content are quantified and analyzed, comparing the old and new nozzle designs. Three kinds of fluid flow pattern are observed in the SEN: “bubbly flow,” “annular flow,” and an intermediate critical flow structure. The annular flow structure induces detrimental asymmetrical flow and worse level fluctuations in the mold. The SEN flow structure depends on the liquid flow rate, the gas flow rate, and the liquid height in the tundish. The gas flow rate should be decreased at low casting speed in order to maintain stable bubbly flow, which produces desirable symmetrical flow. Two main flow patterns are observed in the mold: single roll and double roll. The single-roll flow pattern is generated by large gas injection, small SEN submergence depth, and low casting speed. To maintain a stable double-roll flow pattern, which is often optimal, the argon should be kept safely below a critical level. The chosen optimal nozzle had 45-mm inner bore diameter, downward 15 deg port angle, 2.27 port-to-bore area ratio, and a recessed bottom. The pointed-bottom SEN generates smaller level fluctuations at the meniscus, larger impingement pressure, deeper impingement, and more inclusion entrapment in the strand than the recess-bottom SEN. Mass balances of inclusions in the steel slag from slag and slab measurements show that around 20 pct of the alumina inclusions are removed from the steel into the mold slag. However, entrainment of the mold slag itself is a critical problem. Inclusions in the steel slabs increase twofold during ladle changes and tenfold during the start and end of a sequence. All of the findings in the current study are important for controlling slag entrainment.  相似文献   

16.
A numerical and experimental study was carried out to investigate the solidification process in a twin-belt (Hazelett) caster. The numerical model considers a generalized energy equation that is valid for the solid, liquid, and mushy zones in the cast. Ak-ε turbulence model is used to calculate the turbulent viscosity in the melt pool. The process variables considered are the belt speed, strip thickness, nozzle width, and heat removal rates at the belt-cast interface. From the computed flow and temperature fields, the local cooling rates in the cast and trajectories of inclusions were computed. The cooling rate calculations were used to predict the dendrite arm spacing in the cast. The inclusion trajectories agree with earlier findings on the distribution of inclusion particles for near horizontally cast surfaces. This article also reports the results of an experimental study of the measurement of heat flux values at the belt-cast interface during the solidification of steel and aluminum on a water-cooled surface. High heat fluxes encountered during the solidification process warranted the use of a custom-made heat flux gage. The heat flux data for the belt surface were used as a boundary condition for the numerical model. Objectives of the measurements also included obtaining an estimate of the heat-transfer coefficient distribution at the water-cooled side of the caster belt. Y.G. KIM, formerly Graduate Student, Materials Engineering Department, Drexel University.  相似文献   

17.
双辊铸轧过程控制是一个高度复杂的工程问题,熔池流场和温度场的稳定性直接影响着带坯的质量。研究铸轧工艺参数对流场、温度场的影响规律,对于得到厚度均匀的板带具有重要意义。基于立式双辊铸轧工艺构建了1∶1水模型实验平台和标准湍流数学模型,研究了铸轧速度、熔池接触角及浇注温度对熔池流场、液面波动及出口温度的影响。结果表明:在熔池出口附近,由于熔池体积减小而产生液体回流现象,且回流区域面积与铸轧速度近似成正比。铸轧速度越大,出口温度越高,沿板宽方向温差越小。当铸轧速度大于7.2m/min或熔池接触角小于40°时,熔池液面波动过于剧烈,会严重影响板带的质量。  相似文献   

18.
Computational fluid dynamics (CFD) model with magneto hydro dynamics (MHD) is developed for a thin slab caster to investigate the effects of electromagnetic brake (EMBr) on liquid steel flow in continuous casting mold and to determine the EMBr practices which lead to optimal flow structure. Particle Image Velocimetry (PIV) tests in water model and meniscus flow measurements in real caster are performed to validate the predictions obtained with CFD models. The performance of different submerged entry nozzle designs, SEN 1 and SEN 2, are evaluated. The effects of nozzle submergence in relation to the applied magnetic field on mold flow structure are quantified. There are significant differences between flow structures obtained with SEN 1 and SEN 2, even though both designs have fundamental similarities and contain four ports. EMBr mainly reduces the meniscus velocities for SEN 2 as opposed to the foremost influence of EMBr for SEN 1 that is to significantly slow down the downward jet coming from the bottom ports. In addition, reducing the EMBr strength for shallow nozzle submergence and increasing the EMBr strength for deep nozzle submergence help to maintain similar meniscus activity for all conditions.  相似文献   

19.
This paper presents the Nozzle Electromagnetic Brake (N‐EMBR) technology for twin‐roll strip continuous casting. N‐EMBR consists of imposing a stationary magnetic field coupled with direct current inside the nozzle to control the flow and suppress the free surface fluctuation. A low melting point metal model was set up to examine the magnetic field and additional current effect on the velocity near the meniscus and free surface fluctuation. The experimental results showed that the velocity near the meniscus, the amplitude and main frequency of the free surface fluctuation were all decreased with the N‐EMBR technology. It was found that the N‐EMBR technique can be applied successfully in twin‐roll strip casting to suppress the flow near the meniscus and free fluctuation.  相似文献   

20.
ABSTRACT

Effect of a swirling flow SEN (submerged entry nozzle) outlet design on the multiphase flow and heat transfer in a mould was investigated by using numerical simulation. It was found that different SEN outlet designs could form different flow patterns and temperature distributions on the upper of the mould. The enlarged outlet SEN design had an effect to decrease the horizontal velocity of liquid steel flowing out the SEN outlet, reducing the steel flow velocity towards the solidification front. Although a higher velocity was found near the slag/steel interface with the enlarged outlet SEN, but the turbulent kinetic energy was lower. The reason was that less circulation flows were formed in the region of the mould top. The weak horizontal flow towards the solidification front with the enlarged outlet SEN induced lower wall shear stresses, at the same time it also formed a lower temperature distribution near the solidified shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号