首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

2.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

3.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

4.
IntroductionSince K pf[1]discovered that dicyclopenta die-nyltitanium dichloride possesses antitumour action in1979,a large number of cyclopentadienyltitanium com-plexes with different substituents have been synthe-sized[2,3].The experimental data reveal …  相似文献   

5.
The mechanism of the transformation of (η5-C5H5)2NbCl2 to (η5-C5H5)2NbH3 by hydridoaluminate reducing agents has been investigated. Results suggest disproportionation of a niobium(IV) hydrite, leading to the trihydride product and a niobium(III) hydridoaluminate, (η5-C5H5)2NbH2AlR2, which in turn is converted to the trihydride on hydrolysis. (η5-C5H5)2NbH2AlH2 has been isolated; deuterium labelling shows that hydrogens exchange between ring and metal-bridging positions in this molecule.  相似文献   

6.
The reductive electrochemistry of compounds of the type CpFe(CO)2L (Cp = η-C5H5, η-C5Me5; L = SP(S)(OEt)2, SP(S)(OiPr)2) has been examined by polarography, cylic voltammetry and coulometry. The first one-electron reduction step leads to a bond rupture process with formation of a mercury compound, [CpFe(CO)2]2Hg, at a mercury electrode and the corresponding dimer species at a platinum electrode. The second reduction step corresponds to the reduction of the dimer [CpFe(CO)2]2, except in the polarographic reduction of pentamethylcyclopentadienyl compounds.  相似文献   

7.
It is shown that electrode catalysis of substitution reactions can operate even for systems with rather slow chemical steps and, furthermore, for those which are electrochemically irreversible. A procedure is described for synthesis of Fe(CO)(PPh3)(η5-C5H5)COCH3 from Fe(CO)25-C5H5)CH3 and triphenylphosphine. A simplified mechanism for the catalytic chain, is given and discussed in terms of the structure of the reacting species.  相似文献   

8.
The Ni-methyl complex (η5-C5H5)Ni(CH3)(PPh3) (1) reacted with B(C6F5)3 to give an unstable contact ion-pair complex with a μ-methyl bridge between the Ni and B atoms. Formation of the B-CH3 bond was confirmed by the reaction of this complex with PPh3 to give [(η5-C5H5)Ni(PPh3)2][B(CH3)(C6F5)3] which was structurally characterized. Spontaneous decomposition of the contact ion-pair complex yielded (η5-C5H5)Ni(C6F5)(PPh3) which is very stable and does not show any reactions with norbornene with or without added B(C6F5)3. 19F NMR study showed that the polynorbornene obtained by the catalysis of 1/B(C6F5)3 system has the C6F5 end-group. A series of reactions, which includes CH3/C6F5 exchange between the Ni and B centers with concomitant dissociation of PPh3 to accept coordination of a norbornene monomer, is proposed as the route to active species that can initiate vinyl polymerization of norbornene.  相似文献   

9.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

10.
The X-ray crystal structure and absolute configuration of (−)436-(η5-C5H5)Fe(CO)(CH3CO)[Ph2PNHCH(Me)(Ph)] have been determined from single crystal diffraction data. The compound crystallizes in the monoclinic space group P21 with two molecules in a unit cell of dimensions a = 10.676(4), b = 8.913(7), c = 13.275(9) Å, and β = 91.36°. The structure was solved by the Patterson method and refined to a final R value of 4.7% using 2299 independent data. The iron atom has distorted octahedral coordination, and the configuration at the iron is found to be (S) for the (−)436 diastereoisomer. The Fe---Cp distances average 2.131 Å, with an Fe-(ring centroid)distance of 1.76 Å. The Fe-acetyl distance is virtually identical to that found in another iron/acetyl complex, but shows substantial variation from other compounds where the nature of the C(=O)R group is changed. Comparison to the Mo-alkyl/Mo-acetyl series is made, and the argument for back-donation in transition metal acyls is strengthened.

The orientation of the acetyl group is determined by a strong NHO intra-molecular hydrogen bond having an NO separation of only 2.86 ». The phosphine ligand has a very short Fe---P bond which could be in part caused by the role of the adjacent nitrogen in hydrogen bonding. The remaining ligand geometry is the same as that found in a recently reported ruthenium structure, although the absolute configurations at the chiral carbons are reversed, with the current compound being designated (S) at this site.  相似文献   


11.
Syntheses of the novel sandwich compounds [Fe(η5-C5H5)(η5-C2R2P3)] and [Fe(η5-C5H5)(η5-C2R2P3)W(CO)5], (R = But), are described. The mode of attachment of the [W(CO)5] fragment in the latter compound has been determined by NMR and single crystal X-ray diffraction studies.  相似文献   

12.
The preparation of novel 1-arsa-3,4-diphospholyl and 3-arsa-1,4-diphospholyl anions of the type (C2tBu2AsP2) is described. Spectroscopic and structural characterisation of mono-and bi-metallic complexes of these anions are also reported.  相似文献   

13.
The photochemical reactions of the title complexes were studied in air-free benzene solution. In both cases photolysis leads to the production of complexes of the formula (η5-C5H5)M(PPh3)2. Both reactions are the result of the initial loss of a methyl radical from the excited state. The primary photoproduct, (η5-C5H5)MPPh3 (M=CO, Ni), then scavenges neutral ligands from the solution to yield, in the case of PPh3, (η5-C5H5)M(PPh3)2. In the absence of uncoordinated ligand in the reaction solution, the cobalt derivative reacts with the starting material to yield (η5-C5H5)Co(PPh3)2, a methyl radical and (η5-C5H5)Co(solvent)n.  相似文献   

14.
We report in this communication the synthesis and characterization of two Fe/Re heterodinuclear complexes 3n of formula (η5-C5Me5)Re(NO)(PPh3)(CC)n2-dppe)Fe(η5-C5Me5) (n = 3, 4) as well as the hexacarbonyl dicobalt adduct (4) of the hexatriynediyl complex 33. We show by cyclic voltammetry that the “electronic communication” between the organometallic endgroups and thereby the thermodynamic stability of the corresponding mixed-valent (MV) parent 3n+ is strongly influenced by bridge extension or by complexation of the [Co2(CO)6] fragment. In the case of the hexatriynediyl complex, the MV complex 33+ or 4 can be isolated by performing the chemical oxidation of 33 at low temperature. Spectroscopic studies of this compound and of other stable oxidized redox congeners should now help us to unravel how bridge extension modifies the electronic communication between the different redox-active endgroups in this family of unsymmetrically-substituted polyynediyl compounds.  相似文献   

15.
The complex Fe(η6-C5H5CMe3)2 crystallizes in the centrosymmetric triclinic space group P (Ci1; No. 2) with unit cell dimensions of a 8.770(1) Å, b 8.878(1) Å, c 11.991(1) Å, 107.56(1)°, β 90.85(1)°, γ 90.13(1)°, V 890.0(2) Å3 and Z = 2. A full sphere of data was collected on a four-circle diffractometer. The structure was solved and refined to R 7.93% for all 3155 independent reflections and R 4.98% for those 2002 data with | F0 | > 6σ. | F0 |. The molecules lie on crystallographic inversion centers at 0, 0, 0 and 1/2, 0, 1/2; the crystallographic asymmetric unit therefore consists of two independent half molecules. The molecule centered at 0, 0, 0 (molecule “A”) is ordered and well-defined; that centered on 1/2, 0, 1/2 (molecule “B”)is probably disordered, as indicated by larger “thermal parameters” and a greater range of apparent interatomic distances. Discussion em phasizes the geometry of molecule A, which has precise Ci symmetry with Fe(1A)-B(1A) 2.297(4) Å and Fe(1A)-C(ring) distances ranging from 2.057(6) Å to 2.138(4) Å.  相似文献   

16.
The crystal structure of Cp2TiC6H5CN-2,6-(CH3)2C6H3 is reported. The iminoacyl ligand is η2-coordinated at the metal (Ti---C 2.096(4), Ti---N 2.149(4) Å). The cyclopentadienyl ligands show the normal bent Cp2Ti structure.  相似文献   

17.
The trinuclear titanium(IV) complex (π-C5H5)2TiClOTi(π-C5H5)ClOTiCl(π-C5H5)2 · CHCl3 is formed by hydrolysis of (π-C5H5)2TiCl2 at pH > 3.5 and can be isolated in the crystalline state from the reaction of (π-C5H5)2TiCl2 with Ag2O and water in chloroform. Its structure is determined by X-ray analysis.  相似文献   

18.
The electrochemical behaviour of the ferrocenylacyl derivatives [FcCOER3] (E = C, Si or Ge; R = Me or Ph) is examined. One-electron oxidations to the substantially stable monocations [FcCOER3]+ occur at potentials significantly higher than that observed with ferrocene, but only minor differences hold within the series, independent of the nature of both E and R. In contrast the EPR spectra of the monocations for E = C show that the unpaired electron resides mainly on the iron, whereas for E = Si or Ge the electron density is essentially localized on the C5H4COER3 fragment.  相似文献   

19.
A transition metal-substituted silylacetylene [(η5-C5H5)Fe(CO)2SiMe2C]2, [FpMe2SiC]2 (I) was synthesized and characterized spectroscopically and structurally. I crystallized in the monoclinic space group P21/n, A = 13.011(3) Å B = 12.912(3) Å, C = 13.175(5) Å, β = 94.95(2). The acetylene linkage is reactive toward Co2(CO)8 to form I. Co2(CO)6 (II) which was also characterized spectroscopically and by single crystal X-ray diffraction. II crystallized in the orthorhombic space group Pbca, A = 17.64(2) Å, B = 14.225(10) Å, C = 24.49(2) Å.  相似文献   

20.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号