首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文研究了在50^#钢表面激光熔覆KF-120不锈钢粉的工艺,得到了无裂纹、无气孔、组织致密的激光熔覆层。显微组织观察和显微硬度测试表明熔覆层具有很好的耐腐蚀性能和高的硬度。当激光功率为1.6和1.8kW时,熔覆层硬度高达730Hv左右,与基体分界面清晰,而当激光功率为2.0和2.2KW时,硬度分别降为680和650Hv左右,与基体之间无明显的分界面。这两种情况分别适用于不同的应用场合。  相似文献   

2.
使用自行配制的Ni基合金粉末和混合加入适量其他功能性粉末,采用基体预热和激光同轴送粉熔覆技术,进行在板坯结晶器母体表面熔覆强化的试验研究.结果表明,通过基体预热和激光同轴送粉熔覆强化,可以有效减小预铺再熔覆产生的较多的孔缝现象;可以通过粉末配制控制熔覆层的成分构成,且熔覆层组织致密、均匀,呈典型的快速凝固现象;熔覆层与基体元素相互渗透和稀释,得到了具有良好冶金结合与高致密度的结合过渡区,而且基体稀释率很小;通过此种强化处理可明显提高结晶器的耐磨性和耐蚀性.  相似文献   

3.
对激光熔覆修复表面带铬层的TC2钛合金构件进行了研究.结果表明,熔覆修复层的显微组织从界面往上依次由平面晶、细晶层和中部细小的树枝晶构成,主要元素Ni和Cr在截面内均匀分布,原有Cr层与熔覆层内的Cr元素呈连续状,构件修复区以外的铬层与基体的结合未受激光熔覆的影响.熔覆层具有较高的平均硬度,其中双层熔覆的修复层具有较小的过渡区,其参数组合是比较适宜的.  相似文献   

4.
研究了TC4合金表面激光熔覆WC-12Co/NiCrAlY复合涂层后熔覆层的组织结构、显微硬度、熔覆层深度等。实验结果表明,激光熔覆层在组织结构上分为熔化区、结合区、热影响区。由于涂层中不同部位成分、温度分布及冷却速度不同使初生相呈树枝状、块状、花瓣状及颗粒状等几种形态;实现了涂层与基体的良好冶金结合,熔覆层最高硬度可达1100 HV。利用SEM观察、显微硬度测试等分析手段,研究了激光功率、扫描速度、涂层成分、涂层厚度对熔覆层的显微硬度、熔覆层深度影响。结果表明:在其它条件不变时,随着能量密度的增加,熔覆层的显微硬度下降;随着涂层成分中WC-12Co相对含量的增加,熔覆层的硬度增加,但熔覆层的深度减小;激光能量密度大小对熔覆层中熔化区的深度有较大影响;随着涂层厚度的增加,熔化区的深度在减小。  相似文献   

5.
TC4表面激光熔覆TiC和TiC-NiCrBSi涂层的微观组织研究   总被引:5,自引:0,他引:5  
采用激光熔覆技术在TC4合金表面制备TiC和TiC-NiCrBSi涂层,研究了激光熔覆层的微观组织和硬度。结果表明,在TiC激光熔覆层中,表层(熔覆区)大部分TiC颗粒发生了熔化并以树枝晶形式结晶,底层(稀释区)TiC颗粒向钛合金中溶解并以树枝晶形式沉淀析出。随激光比能的增加,基底钛合金的稀释作用增加,熔覆层的硬度降低。在TiC-NiCrBSi激光熔覆层中,熔覆区中的TiC颗粒向Ni基合金中溶解并以细小的球状颗粒和树枝晶形式沉淀析出,随激光比能的增加,TiC颗粒的溶解程度增加。当TiC颗粒的体积分数超过50%时,TiC颗粒出现偏聚现象。TiC-NiCrBSi激光熔覆层的稀释区是Ni基合金和钛合金的混熔区,呈细小的树枝晶形态。  相似文献   

6.
ZL101铝合金表面激光熔覆Fe-Al金属间化合物涂层   总被引:2,自引:0,他引:2  
以纯Fe粉和纯Al粉为熔覆材料,在ZL101基体表面采用激光熔覆工艺制备了3种不同成分的Fe-Al化合物涂层.利用光学显微镜、扫描电镜(SEM)、X射线衍射(XRD)仪和显微硬度计,对熔覆合金层以及熔覆层与铝合金基体的结合界面区的组织结构和显微硬度进行了分析.实验结果表明,激光熔覆涂层主要由FeAl与Fe3Al相构成,涂层与基体呈锯齿状结合.3种涂层(Fe-Al,2Fe-Al和3Fe-Al)均有较高的显微硬度,分别为744 HV,603 HV和795 HV.  相似文献   

7.
钛合金表面激光熔覆NiCrBSi(Ti)-TiC涂层   总被引:2,自引:0,他引:2       下载免费PDF全文
在TC4合金表面进行了激光熔覆NiCrBSi-TiC,Ti-TiC金属陶瓷复合涂层的试验,对涂层的组织和显微硬度进行了分析和测试。结果表明,NiCrBSi-TiC涂层的组织是在初晶γ-Ni和γ-Ni,Ni3B,M23(CB)6,CrB多元共晶的基底上均匀地分布着TiC颗粒,在激光熔覆过程中TiC颗粒只是边缘发生了溶解或熔化;在Ti-TiC涂层中,TiC颗粒全部溶解或熔化,冷却时以枝晶形式重新析出。NiCrBSi-TiC涂层的显微硬度(HV900~1100)明显高于Ti-TiC的涂层的显微硬度(HV500~700)。  相似文献   

8.
利用横流CO2激光器在TC4表面制备出原位自生TiC陶瓷颗粒增强Ni基复合材料涂层。XRD分析表明:涂层中存在γ-Ni、β-Ti固溶体及TiC为主的陶瓷相。利用SEM、EDS、EPMA对涂层微区组织结构进行了研究。结果表明:涂层内枝晶组织细小均匀,枝晶内和枝晶间存在明显的组织和成分差异。涂层显微硬度比基体显著提高。  相似文献   

9.
铝合金表面激光熔覆铜基合金涂层研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了提高铝合金的表面强度,根据铜合金的液相分离性质,采用CO2激光熔覆方法,在铝合金表面成功制备了铜基合金涂层。结果表明,涂层的基体相为铜基固溶体,强化相主要为呈弥散分布的laves相。涂层中的强化相表现出了"富Mo核心"+"包围相"的复合结构特征,这主要是由于富Mo核心的析出为液相分离提供了异质形核条件所造成的。硬度测试表明,所获涂层的硬度约为270HV0.05,比ZL104铝合金提高了约2倍。  相似文献   

10.
曲轴轴颈损伤表面的激光熔覆再制造修复   总被引:2,自引:0,他引:2  
为了实现发动机曲轴的激光熔覆再制造修复,采用激光熔覆技术在曲轴材料45#钢样板表面制备铁基激光熔覆层,研究了熔覆层的性能,利用光学显微镜和显微硬度计进行了熔覆层金相组织观察和硬度测试。试验结果表明,熔覆层与基体结合良好,且熔覆层硬度为基体硬度的2~3倍;为了使曲轴在绕主轴颈旋转情况下对多拐曲轴连杆轴颈进行激光熔覆,提出了在连杆轴颈表面获得连续均匀熔覆层应满足的条件,并在满足这些条件的前提下,推导出了激光熔覆曲轴连杆轴颈过程中激光束与转动轴颈的运动轨迹和相对速度之间的关系模型,通过试验,验证了轨迹模型的可行性。  相似文献   

11.
304不锈钢表面激光熔覆FeNiCrAl涂层的研究   总被引:1,自引:0,他引:1  
基于橡树岭国家实验室(ORNL)开发的具有良好抗蠕变性能且在材料表面形成Al2O3膜的奥氏体不锈钢(AFA)的化学成分,结合熔覆粉末设计原则进行熔覆粉末配比,在304不锈钢基体表面进行激光熔覆,研究激光功率、铝含量对熔覆层成型性和组织的影响.研究结果表明,激光能量密度为31.25W·s/mm2时,熔覆层成型性良好,无开裂、气孔等缺陷.熔覆层与304不锈钢基体界面呈冶金结合;Al含量从0增加到5wt%,组织呈细化趋势;合金涂层的平均显微硬度高达230HV;铝含量2.5wt%的试样,在腐蚀试验温度90℃下,10%HCl+10%HNO3及6%的FeCl3溶液中进行腐蚀,基体腐蚀速率为42mm/a,涂层腐蚀速率为8.76mm/a.  相似文献   

12.
以液压立柱材料45钢为基体,316不锈钢粉末为熔覆材料,采用不同的工艺参数在基材表面进行激光熔覆试验,制备316不锈钢涂层;然后利用FANUC数控机床对不锈钢涂层进行车削加工,采用数字化测试技术对车削成形试样熔覆层的表面宏观形貌、切屑形态、表面粗糙度、圆柱度、洛氏硬度、显微组织等进行研究,综合分析45钢表面激光熔覆316不锈钢涂层的车削加工性能,优选出最佳的激光熔覆工艺参数.在激光功率为800 W、送粉速率为0.28 g/s、轴向进给速度为0.110 mm/s的最佳熔覆工艺参数下,熔覆层的表面宏观形貌和切屑形态最佳,车削后熔覆层的表面粗糙度最小,圆柱度最高,且熔覆层的硬度值可达到40.3 HRC,内部显微组织呈细化趋势.45钢表面激光熔覆316不锈钢涂层耦合车削加工技术为液压立柱材料45钢的高质量修复和再利用提供了重要的参考价值.  相似文献   

13.
激光熔覆制备非晶复合涂层的研究进展   总被引:3,自引:0,他引:3  
非晶态合金是一种极有发展潜力的新型金属材料。激光熔覆非晶复合涂层不仅能有效提高材料表面性能,还是将非晶态合金推向应用的有效方法。综述了激光熔覆非晶复合涂层的研究现状,包括激光熔覆非晶涂层的材料体系、组织结构和性能特点等,并指出了激光熔覆非晶涂层目前存在的主要问题与发展方向。  相似文献   

14.
采用JK1002型Nd:YAG激光器、同步送粉系统,在塑胶模具钢HPM75基体上,熔覆316L不锈钢粉末,直接成形微流道模具。研究送粉量对熔覆道几何尺寸的影响,研究稳定送粉状态下送粉量与激光功率组合对熔覆质量的影响。结果表明,送粉量1.5~2.5 g/min,获得满足微流道模具几何尺寸要求的微细熔覆道;激光功率400 W和送粉量2.0 g/min组合,获得具有较好熔覆质量的微细熔覆道。采用CAD-Mastercam软件,规划特定形状微流道模具的激光扫描成形路径,采用优化的参数组合进行多层熔覆成形实验,成形出致密、硬度580 HV的微细熔覆道,经后续磨、铣削及少量抛光,制作出高0.1 mm,宽0.3 mm的熔覆道,满足工作技术要求的微流道模具样件,制作1件模具总耗时60~75 min。  相似文献   

15.
采用激光熔覆工艺将不锈钢粉末熔覆在碳钢板上,制备不锈钢-碳钢层合板。通过金属材料性能检测试验,对不锈钢-碳钢层合板的金相组织、元素扩散、显微硬度及拉伸断口形貌等性能进行分析。结果表明,激光熔覆制备层合板获得了致密均匀的覆层;结合面两侧Fe、Cr、Ni等元素呈梯度扩散,扩散区域约为12μm,表明激光熔覆复合材料为扩散型冶金结合;覆层到基体硬度逐渐减小,这使覆层与基体之间应力平稳过渡,提升了其整体力学性能;其屈服强度为405 MPa,超过轧制层合板的326 MPa。基体和扩散区断口形貌为韧性断裂,而覆层表现为脆性断裂,进一步表明激光熔覆层合板结合面结合性能良好。  相似文献   

16.
采用预置涂层和同轴送粉激光熔覆方法,分别以Ta/W混合粉末和纯W粉末为熔覆材料,纯Ta为基底,在Ta板上制备Ta-W合金涂层,对难熔金属材料的激光熔覆工艺方法进行了对比研究。利用扫描电镜(SEM)、能谱仪(EDS)及显微硬度计对两种方法所制备熔覆层的微观组织和显微硬度进行了分析。结果表明,预置粉末法激光熔覆层厚度均匀,稀释率低,涂层内部为粗大的Ta-W合金固溶体组织,熔覆层平均硬度为1500HV,高于基底10倍。同轴送粉法激光熔覆层与基底呈良好的冶金结合,熔深较大,涂层内部为致密细小的树枝状Ta-W合金固溶体,均匀分布于Ta中。涂层平均硬度为800HV,为基材的5倍。  相似文献   

17.
不锈钢表面镍铬激光熔敷层组织与耐磨性能的研究   总被引:6,自引:0,他引:6  
研究了不锈钢表面镍铬激光熔敷层的组织与耐磨性能。结果表明,熔敷层组织细小均匀,有硬化相存在,并具有良好的耐磨性能。  相似文献   

18.
激光表面熔覆制备纳米结构涂层的研究进展   总被引:8,自引:1,他引:8  
激光表面熔覆制备纳米结构涂层是一种新型的纳米表面涂层技术.综述了国内外近年来激光熔覆制备纳米结构涂层的研究进展.从熔覆对象的角度介绍了激光熔覆制备纳米结构涂层的主要技术,熔覆对象可分为纳米粉末和预制纳米结构涂层.而纳米粉末主要有纯纳米粉末、纳米/微米混合粉末和构造纳米粉末等;预制纳米结构涂层可分为热喷涂纳米结构涂层、纳米复合镀层以及溶胶一凝胶(sol-gel)纳米结构涂层等.阐述了激光熔覆制备纳米结构涂层存在的主要问题,并提出了当前的主要发展趋势:激光熔覆原位生成纳米结构涂层、激光熔覆纳米/微米构造复合粉末以及激光熔覆制备纳米结构涂层过程的数值模拟等.  相似文献   

19.
激光熔覆成形316L不锈钢组织的特征与性能   总被引:5,自引:5,他引:5  
对316L不锈钢进行了多层激光熔覆成形试验,采用光学显微镜(OM),扫描电子显微镜(SEM)和电子探针显微分析(EPMA)等手段对其微观组织特征和性能进行了分析测试,揭示了激光熔覆成形316L不锈钢组织形成的规律和机理,获得了无裂纹、无气孔等缺陷的致密熔覆成形组织。熔覆层内部主要由垂直于界面外延生长的柱状树枝晶和平行于扫描方向的转向枝晶组成,枝晶沿着与最大温度梯度最接近的(100)方向择优生长。结果表明,熔覆层成分均匀,稀释率小,与基体呈冶金结合,抗拉强度大大超过传统成形方法加工的材料,且具有较好的塑性。  相似文献   

20.
奥氏体不锈钢激光熔覆镍基复合涂层高温磨损行为   总被引:9,自引:1,他引:9  
为了提高奥氏体不锈钢的高温耐磨性能,采用中空激光熔覆技术在1Cr18Ni9Ti奥氏体不锈钢表面制备出以(Cr,Fe)7C3为增强相,-γ(Ni,Fe)固溶体为基体的高温耐磨复合涂层。分别在室温、300℃和600℃时测试了涂层和不锈钢基体的干滑动磨损性能,并讨论了其磨损机理。结果表明,涂层的耐磨性能明显优于不锈钢基体。室温时,不锈钢的磨损机理为粘着磨损,涂层为磨粒磨损;300℃时,不锈钢的磨损机理为粘着磨损和磨粒磨损,涂层为粘着磨损;600℃时,不锈钢磨损表面出现脆性断裂、塑性变形及严重氧化,涂层表面发生轻微的磨粒磨损和粘着磨损。由于摩擦抛光作用和均匀连续转移膜的形成,涂层在600℃时的耐磨性能高于300℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号