首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

2.
Eu2+-doped K2 Mg Si3O8 phosphors were synthesized by conventional solid-state reaction method. The phase formation of as-prepared samples was characterized by X-ray powder diffraction. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve and CIE coordinates. The phosphor showed bluish-green emission centered at 460 nm under the excitation of UV and near UV light with the wavelength range of 250–430 nm. Two Eu2+ emission centers existed in the K2 Mg Si3O8:Eu2+ phosphor according to the luminescence spectra and the decay curves. The critical quenching concentration of Eu2+ doping was determined to be 3.0 mol.% and the concentration quenching mechanism was dipole-dipole interactions between Eu2+ ions. These results suggested that K2 Mg Si3O8:Eu2+ was a potential bluish-green phosphor candidate for white UV-LED.  相似文献   

3.
Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.  相似文献   

4.
A simple co-precipitation approach taking place between Ln3+, Sr2+ cations and F– anions, led to the formation of nanocrystalline Eu3+ doped Sr2LnF7(Ln=La and Gd) complex fluorides. The reaction was carried out in the presence of polyethylene glycol, PEG 6000 as a surfactant/surface modifier, providing small size and homogeneity of the products. The synthesized compounds were composed of small nanoparticles with an average size of 15 nm. All obtained Eu3+ doped compounds exhibited an intensive red luminescence. In the case of gadolinium based compounds, the energy transfer phenomena could be observed from Gd3+ ions to Eu3+ ions. In order to study the structure and morphology of the synthesized fluorides, powder X-ray diffraction(XRD) and transmission electron microscopy(TEM) measurements were performed. Also FT-IR spectra of the products were recorded, revealing the presence of PEG molecules on the nanoparticles surface. A spectrofluorometry technique was applied to examine optical properties of the synthesized nanoparticles. Excitation and emission spectra as well as luminescence decay curves were measured and analysed. The performed analysis revealed a red luminescence, typical for the Eu3+ ion situated in the inorganic, highly symmetric matrix. Concentration quenching phenomena and lifetimes shortening, together with an increasing of the Eu3+ doping level, were observed and discussed. Judd-Ofelt analysis was also performed for all doped samples, in order to support the registered spectroscopic data and examine in details structural and optoelectronic properties of the synthesized nanomaterials.  相似文献   

5.
Mixed strontium-yttrium borate phosphor Sr3Y2(BO3) 4 doped with Eu3+ ions was obtained by the sol-gel Pechini method.Crystal structure of the synthesized compound was analyzed by X-ray powder diffraction.Optimal conditions for the synthesis were found.Photo-physical properties of the phosphor samples were investigated by collecting excitation and luminescence spectra as well as measuring lumi-nescence lifetime.Judd-Ofelt analysis showed that Eu3+ ions occupied Y3+ sites in the crystalline network.The studied compound showed a red emission with the quantum yield of 54%-55% and can be potentially used as phosphor for plasma display panels and luminescent tubes.  相似文献   

6.
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.  相似文献   

7.
We reported magnetooptical properties of Eu3+(4f(6)) and Tb3+(4f(8)) in single crystals of Gd3Ga5O12 (GGG), Y3Ga5O12 (YGG), and Eu3+(4f(6)) in Eu3Ga5O12 (EuGG) for both ions occupying sites of D2 symmetry in the garnet structure. Absorption, luminescence, and magnetic circular polarization of luminescence (MCPL) spectra of Tb3+ in GGG and YGG and absorption and magnetic circular dichroism (MCD) of Eu3+ in EuGG were studied. The data were obtained at 85 K and room temperature (RT). Magnetic susceptibility of Eu3+ in EuGG was also measured between 85 K and RT. The magnetooptical and magnetic susceptibility data were modeled using the wavefunctions of the crystal-field split energy (Stark) levels of Eu3+ and Tb3+ occupying D2 sites in the same garnets. The results reported gave a precise determination of these Stark level assignments and confirmed the symmetry labels (irreducible representations) of the closely-spaced Stark levels (quasi-doublets) found in the 5D1 (Eu3+) and 5D4 (Tb3+) multiplets. Ultraviolet (UV) excitation (<300 nm) of the 6PJ and 6IJ states of Gd3+ in the doped GGG crystals led to emission from 5D4 (Tb3+) and 5D1 and 5D0 (Eu3+) through radiationless energy transfer to the 4f(n-1)5d band of Tb3+ and to UV quintet states of Eu3+. The temperature-dependent emission line shapes and line shifts of the magnetooptical transitions excited by UV radiation suggested a novel way to explore energy transfer mechanisms in this rare-earth doped garnet system.  相似文献   

8.
A barium-phosphate glass matrix was co-doped with Sn O and Eu2O3 for investigating on material luminescent properties. Optical absorption and X-ray photoelectron spectroscopy(XPS) were employed in the characterization of tin species. The prevalence of divalent tin was indicated by the XPS data in accord with a conspicuous absorption band detected around 285 nm ascribed to twofold-coordinated Sn centers(isoelectronic with Sn2+). Photoluminescence(PL) excitation spectra obtained by monitoring Eu3+ emission from the 5D0 state revealed a broad excitation band from about 250 to 340 nm, characteristic of donor/acceptor energy transfer. Under excitation of such at 290 nm, the co-doped material exhibited a bright whitish luminescence, and a four-fold enhanced Eu3+ emission relative to a purely Eu-doped reference. Time-resolved PL spectra recorded under the excitation at 290 nm exposed a broad band characteristic of the twofold-coordinated Sn centers and emission bands of Eu3+ ions, which appeared well separated in time in accord with their emission decay dynamics. The data suggested that light absorption took place at the Sn centers(donors) followed by energy transfer to Eu3+ ions(acceptors) which resulted in populating the 5D0 emitting state. Energy transfer pathways likely resulting in the enhanced Eu3+ photoluminescence and the consequential light emission were discussed.  相似文献   

9.
Nanoscale Lu2O3:Eu3+ phosphor was prepared by a modified solution combustion method using urea and acrylamide monomer.The particle sizes and photoluminescent properties of nano-phosphor were closely related to the molar ratio of urea-to-RE nitrates and acrylamide monomer-to-RE nitrates.The as-prepared samples with the sizes of 9.6-11.6 nm were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrometer.Lu2O3:Eu3+ nano-phosphor that depicted high photoluminescence in the size around 10 nm was reported.Compared with the sample prepared by solid state reaction,the photoluminescence of sample was increased sufficiently to be 45.1%.The emission spectra of the samples presented the typical emission from 5D0 level to 7FJ(J=0,1,2,3,4) level of the Eu3+ ion.  相似文献   

10.
Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template. The emission spectra showed that the red emission centered at 618nm could be readily increased relatively to the orange emission centered at 590nm by controlling the doping concentration of Ce3+ ion. The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states of Eu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing. This controllable red (5D0→7F2) to orange ( 5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.  相似文献   

11.
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.  相似文献   

12.
Novel nanosized Y2WO6:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure of Y2WO6:Eu3+sample was monoclinic phase characterized by using X-ray diffraction (XRD). The...  相似文献   

13.
Gd2O3:Dy3+ nanocrystals were synthesized via solvothermal method followed by a subsequent calcination.The samples were characterized by X-ray diffraction(XRD),transmission electron microsopy(TEM),Electronic dispersive X-ray spectroscopy(EDX),photoluminescence(PL)spectrum and decay curves.The effect of the annealing temperature on the crystallinity and particle size was studied;heat treatment improved the crystallinity of as-prepared nanocrystals as well as increased their particle size.The nanocryatals presented monodispersed spherical shape under TEM.Photoluminescence spectra showed that nanocrystal exhibited strong yellow emission corresponding to 4F9/2→6H13/2 transition(573 nm)of Dy3+ under UV light excitation,which broadened with the particle size decreased without structure changed.The theoretical mechanism of luminescence was explored and surface effect was thought to be the main reason.  相似文献   

14.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

15.
In the present work,the transparent oxyfluoride glass-ceramic samples containing GdF_3:RE~(3+)(RE=Tb,Eu) nanocrystals(nGCs) were fabricated via controlled heat-treatment of precursor xerogels prepared using a sol-gel method.The formation of GdF_3 nanocrystalline phase from gadolinium(III) trifluoroacetate was verified based on XRD measurements.The average crystal sizes calculated from Scherrer formula were estimated to~10 nm as well as~6 nm for Tb~(3+)-and Eu~(3+)-doped samples,respectively.The optical behavior of prepared sol-gel samples was evaluated based on photoluminescence excitation(PLE) and emission spectra(PL) as well as luminescence decay analysis.Obtained samples exhibit the ~5D_4→~7F_J(J=6-3,Tb~(3+))and the ~5D_0→~7F_J(J=0-4,Eu~(3+)) emission bands recorded within the visible spectral area under excitation at near-UV(393 nm(Eu~(3+)),351,369,378 nm(Tb~(3+))) as well as middle-UV illumination(273 nm(Gd~(3+))).Additionally,based on recorded decay curves,the luminescence lifetimes(τ_m) for the ~5D_4(Tb3+) and the ~5D_0(Eu~(3+))excited states were also evaluated.In general,recorded luminescence spectra and double-exponential character of decay curves for nGCs indicate a successful migration of Tb~(3+) and Eu~(3+) dopant ions from amorphous silicate framework to lowphonon energy GdF_3 nanocrystal phase.  相似文献   

16.
Ca2RE8(SiO4)6O2:A (RE=Y, Gd; A=Pb^2+, Mn^2+) phosphor fdms were dip-coated on quartz glass substmtes through the sol-gel process. X-ray diffraction (XRD), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. Under short wavelength UV excitation, the film showed a red emission with medium intensity. The decay curve of Mn^2+ luminescence in Ca2Gd8(SiO4)6O2:Pb Mn film could be fitted into a single exponential function. The lifetime of Mn^2+ was 10.21 ms in Ca2Gd8(SiO4)6O2.  相似文献   

17.
The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.  相似文献   

18.
BaMgAl10O17:Eu2+,Yb3+ was investigated as a possible quantum cutting system to enhance solar cells efficiency. Phosphors were synthesized by combustion method and composed of nanorods. Photoluminescence spectra showed that Eu in the sample was reduced to bi-valence while Yb remained trivalence. Through a cooperative energy transfer process, the obtained powders exhibited both blue emission of Eu2+ (around 450 nm) and near infrared emission of Yb3+ (around 1020 nm) under broad band excitation (250-410 nm) originating from 4f→5d transition of Eu2+. Energy transfer phenomenon between the sensitizer Eu2+ and the activator Yb3+ was investigated via the lumines-cent spectra and the decay curves of Eu2+ with different Yb3+ concentrations. Results indicated that energy transfer efficiency from Eu2+ to Yb3+ was not high. The poor efficiency can be explained by the long distance between rare earth ions.  相似文献   

19.
In order to obtain a single-host-white-light phosphor,a series of Ba1.8-w-x-y-zSrwLi0.4-xCexEuyMnzSiO4(BSLS:Ce3+,Eu2+,Mn2+)powder samples were synthesized via high temperature solid-state reaction.The structure and photoluminescence properties were investigated.Under ultraviolet excitation,the emission spectra contained three bands:the 370-470 nm blue band,the 470-570 nm green band and the 570-700 nm red band,which arose from the 5d→4f transitions of Ce3+ and Eu2+,and the 4T1→6A1 transition of Mn2+,respectively.The excitation spectra of the emissions of Ce3+ and Mn2+ ions showed the energy transfer from Ce3+ to Mn2+.White light emission was obtained from the tri-doped samples of appropriate doping concentration under 310-360 nm excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号