首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
镍基粉末高温合金的变形抗力大、热塑性较差、热加工窗口窄,而且在热加工过程中易产生裂纹和流动不稳定等缺陷。本文采用Gleeble-3500热模拟实验机对挤压态新型镍基粉末高温合金进行热压缩,压缩温度为1050~1150℃、应变速率为0.001~1 s-1,压缩真实应变为0.69。基于双曲正弦型Arrhenius函数,计算该合金的热激活能Q、构建本构方程,采用多项式拟合摩擦、温度变化、应变补偿的影响,对应力-应变曲线及本构方程进行修正,绘制能量耗散图和热加工图。结果表明:该合金的热激活能Q为536.36 kJ/mol,其在变形温度为1075~1150℃、应变速率为10-3~10-1.5 s-1的条件下有较好的加工性能,但当应变速率为0.001 s-1时,晶粒组织较为粗大,γ′相溶入基体。  相似文献   

2.
GH708高温合金热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

3.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

4.
本文通过热压缩试验研究了IN783低膨胀高温合金在温度为1000-1120℃、应变速率为0.01-10 S-1条件下的热变形行为,并采用电子背散射衍射( EBSD)研究了不同变形参数下合金的组织演变规律。结果表明,IN783合金的峰值应力随着温度的升高和应变速率的减小而显著降低。基于 Arrhenius 方程和 Zener-Hollomon 参数模型,建立了该合金的本构方程,可以很好地描述热变形过程中峰值应力与变形温度和应变速率的关系。基于动态材料模型绘制了IN783合金的热加工图,并根据热加工图和微观组织分析,确定IN783镍基高温合金的失稳区为:变形温度1095℃-1120℃、应变速率100.39814-101 S-1此外,在高温低速率条件下(1060-1120℃、0.01 S-1),尽管合金具有较高的功率耗散值,但会出现混晶组织和晶粒粗化现象,也不适合作为IN783合金的热加工区间。  相似文献   

5.
采用Gleeble-1500热模拟机对GH738镍基高温合金进行高温热压缩变形实验,分析该合金在变形温度1000~1160℃、应变速率0.01~10s-1、工程变形量15%~70%条件下流变应力的变化规律。确定GH738合金热变形方程,建立热加工图(Processing map),并通过组织观察对热加工图进行解释。GH738合金热变形激活能Q为499kJ/mol;热加工图随不同变形量而变化,在应变速率较低,温度较高的状态下,能量耗散效率较高。综合应变量为0.2,0.4,0.6和0.8应变量下的热加工图,确立了该合金最佳热加工"安全通道",为GH738高温合金热加工工艺优化提供理论依据。  相似文献   

6.
镍基高温合金GH4698的热变形组织演变机理   总被引:1,自引:0,他引:1       下载免费PDF全文
王岩  谷宇  王珏  李吉东 《金属热处理》2021,46(6):221-224
采用热模拟等研究方法,对不同变形工艺条件下的GH4698热变形组织演变机理开展了研究。结果表明:高温低速变形有利于动态再结晶进行,材料发生完全动态再结晶的初始变形温度大于1150 ℃;从工程角度出发,合金初始变形温度推荐1200 ℃,采用低速变形原则(0.01~0.1 s-1),为获得相对均匀的锻造组织,终锻温度应高于1050 ℃,锻造过程可多火次完成;经GJB 3782标准推荐多级热处理后,晶粒内部存在大量弥散分布的γ′纳米析出物,起到良好的析出强化作用。  相似文献   

7.
在变形温度为1050~1180℃、应变速率为0.1~10s-1、最大真应变为0.7的条件下,采用Gleeble-3500热模拟试验机研究GH4199合金的热压缩变形行为,得到该合金的热变形激活能及热变形方程式,建立合金的热加工图,并通过组织观察对其热加工图进行解释。结果表明:在实验条件下,GH4199合金均表现出动态再结晶特征;变形温度和应变速率对合金流变应力及相应峰值应变大小的影响显著,流变应力及峰值应变均随着变形温度的降低和应变速率的增加而增大;在真应变为0.1~0.7时合金的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率逐渐升高;在应变速率为0.01s-1时,能量消耗效率达到峰值,约为41%。  相似文献   

8.
镍基高温合金GH4037圆柱形试样以不同的应变速率0.01、0.1和1 s-1在固态温度(1200、1250、1300℃)和半固态温度(1340、1350、1360、1370、1380℃)下进行压缩试验,研究GH4037合金的高温变形行为及组织演变。结果表明,与固态温度相比,半固体温度下的流动应力下降较快。此外,当应变速率为1 s-1时,半固态温度下的流动应力在达到初始峰值应力后继续增大。随着变形温度的升高,初始固相晶粒和再结晶晶粒尺寸增大。在半固态温度下,固相晶粒为等轴晶,液相存在于晶界和晶内。以晶界膨胀为特征的不连续动态再结晶(DDRX)是GH4037合金的主要形核机理。  相似文献   

9.
GH625合金的热变形行为   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机研究了GH625高温合金在应变速率为0.001~1 s-1、变形温度为1223~1373 K条件下的热变形行为。结果表明:当变形温度一定时,随应变速率的升高,合金的峰值应力σp和稳态流动应力σs及对应的应变εp和εs均升高;当变形速率一定时,随变形温度的升高,σp和σs以及εs均降低,但εp基本保持不变。GH625合金在热压缩变形过程中应变速率的降低和变形温度的升高均有利于动态再结晶的发生;根据应力-应变曲线,通过线性回归获得GH625合金的本构方程。  相似文献   

10.
采用Gleeble-3500和Deform-3D有限元软件研究了GH2132高温合金在变形温度为950~1100℃和应变速率为0.001~10s-1时的热变形行为.研究表明,在应变速率为1s-1时,流变曲线与其他流变曲线明显不同,表现出显著的应力降现象.基于流变应力与变形温度和应变速率的关系,构建了 GH2132高温合...  相似文献   

11.
利用Gleeble−3500热模拟试验机对真空感应(VIM)+电渣重熔(ESR)所得的GH5605合金铸锭进行热压缩实验,研究其在变形温度为950~1200℃、应变速率为0.001~10 s^(−1)、真应变为0.65时的热变形行为。结果表明:铸态GH5605合金的真应力−应变曲线属于加工硬化+动态回复型,分为3个阶段,即Ⅰ剧烈加工硬化阶段、Ⅱ平缓加工硬化阶段、Ⅲ稳态流变阶段。建立的Arrhenius本构方程相关系数(Rr)和平均相对误差(δ)分别为0.95和11.99%,结合热加工图和变形组织分析得出GH5605合金良好的加工区域为变形温度1055~1200℃、应变速率0.01~0.1 s^(−1)。  相似文献   

12.
采用热模拟试验机对铸态和不同程度均匀化处理后的GH141合金进行压缩和拉伸变形,研究了合金的热变形行为以及热变形后的再结晶程度.结果表明:铸态GH141合金热变形过程中开始再结晶温度为1050℃,随着变形温度升高,再结晶越充分,变形抗力越低.不同程度均匀化处理后,合金再结晶程度相比未均匀化处理的合金更低,但均匀化处理后...  相似文献   

13.
梁艳  马超  李春颜 《金属热处理》2012,37(10):105-107
通过高温拉伸试验、热顶锻落锤试验、M6C相析出规律分析以及高温扩散退火试验等一系列试验,研究了GH141合金的热加工塑性。结果表明,GH141合金在1000~1150℃范围内加热具有良好的热加工塑性,生产中最佳加热温度为1170℃,使M6C相在加热过程中全部回溶,开锻温度≥1100℃,停锻温度≥1000℃。合金在锻造前应先进行(1180±10)℃高温扩散退火处理,保温时间≥10 h。  相似文献   

14.
15.
GH761变形高温合金的热变形行为   总被引:2,自引:0,他引:2  
镍基GH761合金热模拟压缩实验表明,当变形温度Td一定时,随应变速率ε的降低,变形峰值应力σp和稳态流动开始应力σs日及与它们对应的应变εp和εs均降低;当应变速率一定时,随Td的升高,σp和σs以及εs均降低,但εp基本不变.细化原始晶粒可提高再结晶形核率,在此基础上降低变形温度和提高变形速率是细化最终晶粒的重要途径.当应变达到完全再结晶时,合金具有最均匀且细小的组织;超过这一应变值,晶粒开始长大.GH761合金的热变形本构方程为:ε=6.5×106σp4.86exp(-461×103/RT).  相似文献   

16.
新型镍基粉末高温合金的热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对新型镍基粉末高温合金FGH98Ⅰ进行了单向热压缩变形试验,研究了其在变形温度为950~1150℃,应变速率为0.0003~1s-1条件下的热变形行为,建立和对比了不同应变量下的应变速率敏感因子m图和功率耗散效率因子η图,并对热加工图进行了组织验证。结果表明:合金的流变应力随着变形温度的升高和应变速率的降低而降低;不同应变量下的η图与m图相似,随着应变量的增大,峰区的η与m值逐渐升高;当真应变为0.5时,在变形温度为1050℃,应变速率为0.0003s-1条件下,η与m达到峰值,分别为40%和25%,合金发生了动态再结晶,晶粒细化且无内裂纹。该结果为FGH98Ⅰ合金实际热加工工艺的优化提供了理论依据。  相似文献   

17.
采用非持续加热方式设计非等温热模拟压缩实验,模拟不同终锻温度条件下GH4738高温合金的热变形行为,并结合组织观察分析终锻温度对GH4738合金组织均匀性以及后续热处理过程组织遗传性的影响规律.研究结果表明,在相同始锻温度条件下,终锻温度过低会抑制GH4738合金热变形过程中动态再结晶的发生,从组织上表现为再结晶程度较...  相似文献   

18.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

19.
优质GH4169镍基高温合金的Nb含量较高,热变形工艺参数需严格控制,特别是经δ 相时效处理(Delta Processed,DP)后,因此有必要对其热变形行为进行研究。本文对经DP处理后的优质GH4169高温合金在不同变形温度 (980,1010,1040和1070°C)及应变速率 (0.001,0.01,0.1和1 s-1)进行热模拟压缩实验。结果表明: GH4169镍基高温合金在该变形条件下的平均激活能Q = 528.24 kJ/mol,Nb元素含量上调会显著增加合金的变形激活能(约40 kJ/mol),该材料的热变形过程可通过双曲正弦本构模型进行描述。通过表征相应热变形后的显微组织,结合GH4169高温合金的热加工图,表明GH4169高温合金适宜在低温低应变速率和高温高应变速率下加工。  相似文献   

20.
GH674高温合金的热变形行为   总被引:6,自引:1,他引:5  
采用Gleeble-1500热模拟机对GH674高温合金在应变速率为0.01s-1~1.0s-1、变形温度为950℃~1200℃、真应变为1的条件下的热变形行为进行了研究。结果表明,在试验研究的变形条件下,GH674型高温合金在热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的指数函数能较好地描述该合金高温变形时的流变行为;所获得的峰值应力热变形方程为σp=21.3139ln.ε+9.580495×105/Τ-538.11638;其热变形激活能Q为373.7102803kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号