首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlCoCrFeNi高熵合金因其优异的综合力学性能而有望成为新一代高温结构材料,但对其高温摩擦磨损性能的研究还较为少见.本文中应用放电等离子烧结(SPS)技术制备了AlCoCrFeNi高熵合金,研究了其显微组织和力学性能,系统地考察了其在室温至800℃时的摩擦磨损性能.结果表明:应用SPS技术制备的AlCoCrFeNi高熵合金主要由FCC相、无序BCC相和少量有序BCC相组成;呈网格状分布的FCC相使高熵合金具有良好的塑性和韧性,而呈等轴状分布的BCC相赋予了高熵合金优异的强度;高熵合金室温至800℃时的摩擦系数在0.43~0.51之间,磨损率低于10–5mm3/(N·m).室温至中温阶段主要为磨粒磨损,中温至高温阶段的磨损机制为磨粒磨损、黏着磨损和塑性变形综合作用.高温下高熵合金表面形成了一层主要由为Al2O3和Cr2O3组成的氧化物膜,在一定程度上起到抗磨作用.  相似文献   

2.
采用真空电弧熔炼技术制备了NiAlCoCrFeTi (HESA-1)和NiAlCoCrFeTiTaMoW (HESA-2)这2种典型的高熵高温合金,研究了其微观组织、力学性能和25~900℃的摩擦学性能.结果表明:2种合金均由无序面心立方晶格(FCC)结构的γ相和有序FCC结构的γ’相组成;γ相使该合金具有良好的塑性和韧性,γ’相赋予其较高的强度和硬度. 25~900℃,2种合金的摩擦系数和磨损率均随温度的升高而呈下降趋势. 25℃时,磨损机制主要为磨粒磨损,摩擦系数较大且磨损率较高. 400℃以上时,在摩擦氧化和热氧化的作用下,磨痕表面开始形成1层不连续的氧化物釉质层,摩擦系数和磨损率均有所降低.当温度达到900℃时,磨痕表面上形成了1层光滑且致密的氧化物釉质层,该釉质层具有良好的减摩抗磨作用,使HESA-1和HESA-2这2种合金的摩擦系数分别降至0.26和0.25,磨损率分别降至13.3×10-6和8.0×10-6 mm3/(N·m).在高温摩擦过程中,合金表面的Al、Cr、Ni和Co等元素在摩擦热和环境热的共同作...  相似文献   

3.
采用放电等离子烧结技术在NbTaWMo难熔高熵合金中掺杂Si元素成功制备了NbTaWMoSi0.25难熔高熵合金,研究了物相组成、显微结构和力学性能的变化,并重点对比了25 ~800 ℃的摩擦学性能. 结果表明:NbTaWMo高熵合金由单一的BCC相组成,而NbTaWMoSi0.25合金由BCC相和硅化物两相组成. 在NbTaWMo难熔高熵合金中掺杂Si元素后,高熵合金室温下的屈服强度、抗压强度和断裂应变均有显著的提高. NbTaWMo难熔高熵合金掺杂Si元素后从25 ℃到800 ℃摩擦系数变化较小,但其耐磨性显著改善,其耐磨性的提高主要由于硅化物增强了合金的强度. NbTaWMoSi0.25难熔高熵合金从室温到中温阶段的磨损机制主要为磨粒磨损,而高温阶段的磨损机制主要表现为磨粒磨损和氧化磨损的综合作用. NbTaWMoSi0.25高熵合金在宽温域内具有良好的耐磨性,在高温摩擦学领域具有较大的应用潜力.   相似文献   

4.
高熵合金作为一种多主元合金,突破了传统合金单主元的设计思想,体现出不同于传统合金的优异性能,特别在高温、高压、高应变率等极端环境中有着良好的应用前景。从微观、细观与宏观尺度分析高熵合金的冲击变形特性对于其工程应用具有重要的指导作用,主要涉及元素效应、细观结构以及高温高应变率条件对高熵合金冲击损伤演化、微观结构变化和冲击变形演化过程的影响机制。元素效应主要讨论了原子半径差异较大的金属与非金属元素对高熵合金冲击变形行为的影响;根据细观结构不同,将高熵合金分为单相与多相结构,单相高熵合金为塑性较好的面心立方(face centered cubic,FCC)结构、强度较高的体心立方(body centered cubic,BCC)与密排六方(hexagonal close-packed,HCP)结构。多相高熵合金的细观结构为这三种单相结构或者与其他相的组合,多相高熵合金的协同变形能够使其获得更为优异的综合力学性能。高温与高应变率作为外部条件对高熵合金的影响与其他金属相似,高温促进材料软化而高应变率促进材料硬化,部分高熵合金在高温下具有更优异的抗变形能力。针对高熵合金的冲击特性,总结了目前高熵合金在国防工程冲击领域的应用,归纳了高熵合金冲击变形行为研究存在的问题,并进一步对高熵合金在极端条件下的应用进行了展望。  相似文献   

5.
氧化锆增韧莫来石复相陶瓷的摩擦磨损行为与磨损机制   总被引:4,自引:4,他引:4  
研究了氧化锆增韧莫来石得相陶瓷(ZTM)与氧化铝陶瓷摩擦副在室温至400℃干摩擦下的摩擦磨损行为与机制。研究表明:ZTM陶瓷的磨损率随温度的升高而逐渐降低;室温下ZTM陶瓷的磨损机制以微观切削和微观断裂为主;随着温度的升高,ZTM陶瓷中的玻璃相具有微观润滑作用,其磨损机制转变为微观断裂和晶粒剥落为主;偶件氧化铝的磨损机制主要是脆性断裂及晶粒剥落。  相似文献   

6.
采用放电等离子烧结(SPS)制备不同Al含量的Al_xFeCrNiCoCu(x=0,1,2,3)高熵合金涂层.通过XRD、SEM和冲蚀磨损等检测方法,研究了Al含量对该高熵合金涂层的组织及冲蚀磨损性能的影响.结果表明:FeCrNiCoCu高熵合金的微观组织主要为简单FCC结构的富Cu相及富Al相.随着Al元素增加,涂层的微观结构出现由FCC向BCC的转变.同时,涂层的硬度、耐冲蚀性也显著提高.随着冲蚀角度的增加,涂层的冲蚀磨损量逐渐增加,表现出脆性材料的冲蚀磨损特性.在冲蚀角度为90°时,随着Al元素的增加,涂层的主要冲蚀磨损机理逐渐由微切削和锻造挤压转变为犁削.  相似文献   

7.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征,即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟,进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.  相似文献   

8.
高熵合金是近年来提出的一种新的合金设计理念,打破了一般合金中以1种或2种元素为主,辅以极少量其他元素来改善合金性能的传统思想,由多种元素以等原子或近似等原子比混合后形成具有独特原子结构特征的单一固溶体合金.高熵合金的多主元特性使其在变形过程中表现出多重机制(包括位错机制、形变孪生、相变等)的协同,因而高熵合金已经展示了优异的力学性能,如高强、高硬、高塑性、抗高温软化、抗辐照、耐磨等,被认为是最具有应用潜力的新型高性能金属结构材料,已经成为国际固体力学和材料科学领域研究的热点.本文首先介绍了高熵合金独特的结构特征,即具有短程有序结构和严重的晶格畸变;随后对近年来针对不同类型高熵合金(包括具有面心立方相、体心立方相、密排六方相、多相以及亚稳态高熵合金)力学性能、变形行为方面的研究成果,特别是强韧化机制以及相关的原子尺度模拟,进行了较为系统的综述;最后强调了高熵合金未来研究中所面临的一些主要问题和挑战,并对其研究进行了展望.  相似文献   

9.
采用等离子体源渗氮技术在AISI 316奥氏体不锈钢表面制备γN相层.研究了γ_N相层/Si_3N_4陶瓷球摩擦副在球-盘式磨损仪、载荷2~8 N、滑动速度0.15~0.22 m/s干摩擦条件下的磨损行为,基于详细的磨痕表面和磨屑显微分析,通过响应面分析法建立γ_N相层在此状态下的磨损机制转变图.结果表明:γ_N相层在低载荷下的磨损机制主要是氧化磨损;而在较高载荷下的磨损机制主要是塑性变形和磨粒磨损.  相似文献   

10.
使用真空电弧熔炼技术制备了Al0.2Co1.5CrNi1.5Ti0.5Mox(x=0.0, 0.1, 0.2, 0.3, 0.4)高熵合金,研究了Mo含量对该高熵合金组织结构、力学性能和摩擦学性能的影响规律及其作用机制. Al0.2Co1.5CrNi1.5Ti0.5高熵合金由FCC相和有序AlNi3相组成,Mo元素添加后促进形成σ相.较大原子半径的Mo元素引发的晶格畸变效应和σ硬质相析出引起的第二相强化效应赋予高熵合金优良的力学和摩擦学性能.随着Mo含量的提高,合金的硬度增加了40.4%,屈服强度增加了32.1%.对该合金的摩擦磨损性能进行研究,发现Mo元素的添加显著改善了高熵合金的摩擦学性能,尤其是当Mo的摩尔比为0.4时,高熵合金室温磨损率为2.62×10-6 mm3/(N·m),800℃时的磨损率为6.23×10  相似文献   

11.
为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.   相似文献   

12.
高熵合金由于多主元元素混合引起高熵结构效应,使其具有优异的物理、力学和化学特性,如高强度、高耐磨性、高耐蚀性、热稳定性、优异的抗辐照性能等.然而,辐照诱发高熵合金材料的硬化行为和力学性能预测仍缺少相关研究,严重地限制了对其长期服役后材料性能的评估.基于晶体塑性理论结合实验结果,研究了空洞形状依赖的硬化行为、位错环诱发的硬化行为以及氧化物弥散增强的高熵合金力学性能.研究发现,考虑多面体空洞与位错的概率依赖的空间交互作用,能够更加准确地预测辐照金属的屈服应力;晶格畸变对屈服强度,有着重要的贡献;氧化物弥散相对位错运动起强烈钉扎的作用,从而对强度产生影响,直接决定抗辐照性能.高熵合金作为一种具有综合优异力学性能的新型结构材料,在先进核能系统中有望被广泛应用,比如核反应堆的核燃料包壳管.  相似文献   

13.
高熵合金是一种由多种主元元素组成的新型合金.实验研究表明等原子比CrMnFeCoNi高熵合金在低温下具有比室温更高的拉伸强度和断裂韧性.论文针对这一现象,利用分子动力学模拟对平均晶粒尺寸为6.18 nm的CrMnFeCoNi纳米晶在300、200和77 K下分别进行拉伸模拟.模拟研究揭示了纳米尺度CrMnFeCoNi高熵合金力学行为的温度效应和强韧机理.微结构演化分析表明:随着温度的降低,塑性变形阶段滑移系开动的越少,位错滑移所受的阻力越大,屈服强度和抗拉强度越大;温度越低,模型破坏时,孔洞缺陷形核较慢,更多孔洞缺陷演化成断口,更多的孔洞和断口分摊拉伸应变,使得高熵合金纳米晶的低温韧性更好.  相似文献   

14.
高熵合金因其优异的性能受到广泛关注,如高强度、高硬度、高韧性、高耐磨、高耐辐照、高耐腐蚀、高电阻、高耐热等,有望应用于核能、航天航空等重要领域和重大装备.高熵合金制备、组织结构以及性能表征等方面开展的实验研究表明其独特的性质依赖于高熵合金高熵效应、晶格畸变和扩散迟滞.在微观尺度以及宏观尺度,理论模型和数值模拟为研究高熵合金微观机理和力学特性提供了一种方法.建立从高熵合金的微观结构与变形机理到宏观独特力学性能的联系是一个多尺度的科学问题.最近,基于实验观察结果,采用多尺度的理论与模拟方法(第一性原理、分子动力学、离散位错动力学、晶体塑性有限元、微结构依赖的理论模型),研究了高熵合金层错能、弹性模量、扩散系数以及相稳定性,揭示了高熵合金变形与强韧化机制.论文综述多尺度计算在高熵合金力学性能和变形行为方面的研究进展,并对高熵合金在原位变形实验、高通量技术以及机器学习方面的研究进行简要展望.  相似文献   

15.
通过引入碳元素,设计了一种以原位形成的碳化物为增强相的高熵合金Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4),并采用放电等离子烧结(SPS)技术成功制备了这种高熵合金.采用XRD、SEM、EDS、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至800℃下的摩擦学性能.结果表明:Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4)高熵合金由面心立方(FCC)结构的高熵固溶体基体相和弥散分布的TiC陶瓷相组成.FCC相使高熵合金具有良好的塑性和韧性,而TiC增强相赋予了高熵合金高的硬度和强度.随着温度的升高,高熵合金的摩擦系数和磨损率均具有逐渐减小的趋势.在800℃时,鉴于摩擦氧化作用,在磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金表现出了优异的高温摩擦学性能.  相似文献   

16.
采用真空电弧熔炼技术制备了CoCrFeNiWx(x=0.25、0.5、0.75及1.0)系列高熵合金,研究了W元素含量对合金晶体结构、显微组织、力学性能以及室温与900℃摩擦学性能的影响.结果表明:合金中W含量较低时形成单相面心立方(FCC)固溶体,W含量较高时会促进金属间化合物μ相的形成,随着W含量提升,合金显微组织由FCC胞状树枝晶(x=0.25)转变为FCC树枝晶及晶间层片状(FCC+μ)共晶组织(x=0.5、0.75),最后转变为FCC基体上分布的粗大树枝状μ相(x=1.0).由于W元素的固溶强化及原位生成金属间化合物μ相的第二相强化作用,使合金的强度和硬度等力学性能显著增加的同时塑性降低.在试验载荷为10 N,滑动速度0.3 m/s的测试条件下,CoCrFeNiWx系列高熵合金与Si3N4陶瓷球配副时的球-盘摩擦试验结果表明:W元素的添加显著改善了合金的室温耐磨性,但对摩擦系数的影响较小;而900℃摩擦时,摩擦表面形成的多元复合氧化物摩擦釉质层具有良好的减摩抗磨作用,特别是W元素氧化产生的...  相似文献   

17.
采用快速热压烧结方法成功制备了原位生成MoB增强的Cu-Sn-Al合金复合材料,研究了增强体添加含量对复合材料体系摩擦学性能的影响,并对其摩擦磨损机制进行了分析.研究表明:在Cu-5Sn合金基体中添加MoAlB陶瓷颗粒后,烧结过程中,层状结构MoAlB陶瓷中的Al元素能够扩散到基体中,生成原位MoB增强Cu-Sn-Al合金复合材料.此外,复合材料体系的硬度随着MoAlB添加量的增加逐渐提高,与Cu-5Sn合金相比,当添加MoAlB质量分数为30%时,复合材料硬度值提高了约5倍.同时,随着添加MoAlB陶瓷颗粒含量的增加,复合材料体系摩擦系数和磨损率逐渐降低,当添加的MoAlB陶瓷颗粒质量分数为30%时,复合材料摩擦系数和磨损率分别低至0.33和5.4×10-5 mm3/(N·m).由于原位生成MoB颗粒的钉扎效应,在摩擦过程中能够抑制基体材料的塑性变形,使得材料体系的硬度显著提高,磨损率明显降低,摩擦过程中表面生成的摩擦氧化物,能够降低材料体系的黏着磨损和二体磨粒磨损,可以起到优异的抗磨减摩效应.  相似文献   

18.
Ni—Ti合金的磨损行为及应用研究进展   总被引:3,自引:2,他引:3  
从 Ni- Ti合金的组织结构与力学变形行为的关系出发 ,综合评述了该合金摩擦磨损性能和磨损机理研究进展及应用研究现状 ,并指出了进一步研究的主要方向  相似文献   

19.
采用分子动力学模拟来研究纳米刮擦载荷作用下单晶CoCrFeMnNi高熵合金的刮擦变形行为和晶体结构演变,讨论了平面、矩形和三角形表面形貌以及不同刮头半径对单晶CoCrFeMnNi高熵合金表面刮擦响应的影响.结果表明:单晶CoCrFeMnNi高熵合金在刮擦过程中的主要塑性变形机理是Shockley不全位错的滑移变形.对于平面、矩形和三角形表面形貌的CoCrFeMnNi高熵合金,平面类型形貌试样具有最大的摩擦系数.在1.2 nm的刮擦深度下,表面的非平面形貌通过位错湮灭的方式降低刮擦区域的塑性变形,减小刮擦区域的摩擦系数从而产生减摩效应.  相似文献   

20.
巴氏合金ZChSnSb 8-8海水环境下的摩擦学行为研究   总被引:3,自引:1,他引:2  
本文研究了巴氏合金ZChSnSb 8-8/AISI 52100轴承钢摩擦副在模拟海水环境下的摩擦学行为。通过扫描电镜(SEM),X射线能谱仪(EDS),X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)对试验样品进行表征。结果表明:巴氏合金ZChSnSb 8-8在海水润滑下具有较低的摩擦系数和磨损率,海水作为润滑介质,起到了一定的润滑作用。在海水润滑下,ZChSnSb 8-8的摩擦系数随载荷和滑动速率的增加而减小;磨损率随着载荷的增加而增加,但随着滑动速率的增加而减小。低的摩擦系数和磨损率主要归因于巴氏合金ZChSnSb 8-8独特的微观结构和海水的润滑作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号