首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wide geographic spread of Eurasian Goose/Guangdong lineage highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses by wild birds is of great concern. In December 2014, an H5N8 HPAI clade 2.3.4.4 Group A (2.3.4.4A) virus was introduced to North America. Long‐distance migratory wild aquatic birds between East Asia and North America, such as Northern Pintail (Anas acuta ), were strongly suspected of being a source of intercontinental transmission. In this study, we evaluated the pathogenicity, infectivity and transmissibility of an H5N8 HPAI clade 2.3.4.4A virus in Northern Pintails and compared the results to that of an H5N1 HPAI clade 2.3.2.1 virus. All of Northern Pintails infected with either H5N1 or H5N8 virus lacked clinical signs and mortality, but the H5N8 clade 2.3.4.4 virus was more efficient at replicating within and transmitting between Northern Pintails than the H5N1 clade 2.3.2.1 virus. The H5N8‐infected birds shed high titre of viruses from oropharynx and cloaca, which in the field supported virus transmission and spread. This study highlights the role of wild waterfowl in the intercontinental spread of some HPAI viruses. Migratory aquatic birds should be carefully monitored for the early detection of H5 clade 2.3.4.4 and other HPAI viruses.  相似文献   

2.
In the Netherlands, three commercial poultry farms and two hobby holdings were infected with highly pathogenic avian influenza (HPAI) H5N6 virus in the winter of 2017–2018. This H5N6 virus is a reassortant of HPAI H5N8 clade 2.3.4.4 group B viruses detected in Eurasia in 2016. H5N6 viruses were also detected in several dead wild birds during the winter. However, wild bird mortality was limited compared to the caused by the H5N8 group B virus in 2016–2017. H5N6 virus was not detected in wild birds after March, but in late summer infected wild birds were found again. In this study, the complete genome sequences of poultry and wild bird viruses were determined to study their genetic relationship. Genetic analysis showed that the outbreaks in poultry were not the result of farm‐to‐farm transmissions, but rather resulted from separate introductions from wild birds. Wild birds infected with viruses related to the first outbreak in poultry were found at short distances from the farm, within a short time frame. However, no wild bird viruses related to outbreaks 2 and 3 were detected. The H5N6 virus isolated in summer shares a common ancestor with the virus detected in outbreak 1. This suggests long‐term circulation of H5N6 virus in the local wild bird population. In addition, the pathogenicity of H5N6 virus in ducks was determined, and compared to that of H5N8 viruses detected in 2014 and 2016. A similar high pathogenicity was measured for H5N6 and H5N8 group B viruses, suggesting that biological or ecological factors in the wild bird population may have affected the mortality rates during the H5N6 epidemic. These observations suggest different infection dynamics for the H5N6 and H5N8 group B viruses in the wild bird population.  相似文献   

3.
The aim of this work was to explore the comparative epidemiology of influenza viruses, H5N1 and H7N9, in both bird and human populations. Specifically, the article examines similarities and differences between the two viruses in their genetic characteristics, distribution patterns in human and bird populations and postulated mechanisms of global spread. In summary, H5N1 is pathogenic in birds, while H7N9 is not. Yet both have caused sporadic human cases, without evidence of sustained, human‐to‐human spread. The number of H7N9 human cases in the first year following its emergence far exceeded that of H5N1 over the same time frame. Despite the higher incidence of H7N9, the spatial distribution of H5N1 within a comparable time frame is considerably greater than that of H7N9, both within China and globally. The pattern of spread of H5N1 in humans and birds around the world is consistent with spread through wild bird migration and poultry trade activities. In contrast, human cases of H7N9 and isolations of H7N9 in birds and the environment have largely occurred in a number of contiguous provinces in south‐eastern China. Although rates of contact with birds appear to be similar in H5N1 and H7N9 cases, there is a predominance of incidental contact reported for H7N9 as opposed to close, high‐risk contact for H5N1. Despite the high number of human cases of H7N9 and the assumed transmission being from birds, the corresponding level of H7N9 virus in birds in surveillance studies has been low, particularly in poultry farms. H7N9 viruses are also diversifying at a much greater rate than H5N1 viruses. Analyses of certain H7N9 strains demonstrate similarities with engineered transmissible H5N1 viruses which make it more adaptable to the human respiratory tract. These differences in the human and bird epidemiology of H5N1 and H7N9 raise unanswered questions as to how H7N9 has spread, which should be investigated further.  相似文献   

4.
Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007–2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.  相似文献   

5.
Wild and domestic aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). All subtypes of AIVs, including 16 hemagglutinin (HA) and nine neuraminidase (NA), have been isolated from the waterfowls. The H5 viruses in wild birds display distinct biological differences from their highly pathogenic H5 counterparts. Here, we isolated seven H5N3 AIVs including three from wild birds and four from domestic ducks in China from 2015 to 2018. The isolation sites of all the seven viruses were located in the region of the East Asian‐Australasian Migratory Flyway. Phylogenetic analysis indicated that the surface genes of these viruses originated from the wild bird H5 HA subtype and the N3 Eurasian lineage. The internal genes of the seven H5N3 isolates are derived from the five gene donors isolated from the wild birds or ducks in Eastern‐Asia region. They were also divided into five genotypes according to their surface genes and internal gene combinations. Interestingly, two of the seven H5N3 viruses contributed their partial internal gene segments (PB1, M and NS) to the newly emerged H7N4 reassortants, which have caused first human H7N4 infection in China in 2018. Moreover, we found that the H5N3 virus used in this study react with the anti‐serum of the H5 subtype vaccine isolate (Re‐11 and Re‐12) and reacted well with the Re‐12 anti‐serum. Our findings suggest that worldwide intensive surveillance and the H5 vaccination (Re‐11 and Re‐12) in domestic ducks are needed to monitor the emergence of novel H5N3 reassortants in wild birds and domestic ducks and to prevent H5N3 viruses transmission from the apparently healthy wild birds and domestic ducks to chickens.  相似文献   

6.
The H5N8 highly pathogenic avian influenza viruses (HPAIVs) belonging to clade 2.3.4.4 spread from Eastern China to Korea in 2014 and caused outbreaks in domestic poultry until 2016. To understand how H5N8 HPAIVs spread at host species level in Korea during 2014–2016, a Bayesian phylogenetic analysis was used for ancestral state reconstruction and estimation of the host transition dynamics between wild waterfowl, domestic ducks and chickens. Our data support that H5N8 HPAIV most likely transmitted from wild waterfowl to domestic ducks, and then maintained in domestic ducks followed by dispersal of HPAIV from domestic ducks to chickens, suggesting domestic duck population plays a central role in the maintenance, amplification and spread of wild HPAIV to terrestrial poultry in Korea.  相似文献   

7.
In December 2008, bird species in two geographically distant holdings were found positive for H5 viruses following the annual Avian influenza serological screening in Belgium. The virological tests performed identified in one holding a low‐pathogenic avian influenza (LPAI) virus subtype H5N2, and a H5 LPAI virus was identified by real‐time PCR and direct sequencing at the second holding. The first farm was an outdoor mixed holding housing ornamental birds and poultry (n = 6000) and the second a free‐range geese breeding farm (n = 1500). No clinical signs or mortalities were reported. Control measures defined by Council Directive 2005/94/EC were followed, including notification to the European Commission via the Animal Disease Notification System and to the World Organization for Animal Health, and poultry were killed, while ornamental bird species were quarantined. Partial sequencing of the H5N2 virus haemagglutinin and neuraminidase N2 gene sequences revealed a close homology to some recent LPAI isolates identified from wild birds in Germany and Italy and from wild birds in Eurasia and Africa, respectively. It is noteworthy that, these two holdings were already H5 positive based on HI test results carried out during the previous serological screening; however, no virus was detected at that time. To have a better understanding of the potential ‘silent’ circulation of the H5N2 isolate in the field, experimental infections of chickens and turkeys were performed. The low excretion detected might in part explain viral persistence not associated with spread between gallinaceous birds in the same holding, indicating that the H5N2 LPAI isolate was not fully adapted to these two poultry species. Our results highlighted limitations to only using serological screening for the early detection of LPAI in an ‘at‐risk farm’, suggesting that virological and serological monitoring tests be applied simultaneously as a means of testing animals in ‘at‐risk farms’.  相似文献   

8.
9.
Since the first outbreak of highly pathogenic H5N1 avian inafluenza (HPAI) in Bangladesh in February 2007, a total of 519 disease events have been reported till 22 October 2011. Partial HA gene sequences of 11 selected H5N1 HPAI isolates of 2007 to 2011 were determined and subjected to phylogenetic analysis. The study revealed a recent introduction of clade 2.3.2 and 2.3.4 viruses into Bangladesh in 2011 in addition to clade 2.2 viruses that had been in circulation since 2007. Clade 2.3.2 virus isolates from Bangladesh are phylogenetically related to the newly designated clade 2.3.2.1 viruses, reported recently from Asia and Eastern Europe.  相似文献   

10.
During the 2016–2017 winter season, we isolated 33 highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype and three low pathogenic avian influenza viruses (LPAIVs) from debilitated or dead wild birds, duck faeces, and environmental water samples collected in the Izumi plain, an overwintering site for migratory birds in Japan. Genetic analyses of the H5N6 HPAIV isolates revealed previously unreported phylogenetic variations in the PB2, PB1, PA, and NS gene segments and allowed us to propose two novel genotypes for the contemporary H5N6 HPAIVs. In addition, analysis of the four gene segments identified close phylogenetic relationships between our three LPAIV isolates and the contemporary H5N6 HPAIV isolates. Our results implied the co‐circulation and co‐evolution of HPAIVs and LPAIVs within the same wild bird populations, thereby highlighting the importance of avian influenza surveillance targeting not only for HPAIVs but also for LPAIVs.  相似文献   

11.
For several years, poultry production in Egypt has been suffering from co‐circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1‐B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017–2018. Real‐time RT‐PCR (RT‐qPCR) substantiated the co‐presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1‐positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8‐positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2‐positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co‐circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT‐qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.  相似文献   

12.
Human infectious avian influenza virus (AIV) H7N9 emerged in China in 2013. The N9 gene of H7N9, which has the ability to cause death in humans, originated from an H11N9 influenza strain circulating in wild birds. To investigate the frequency and distribution of the N9 gene of the H11N9 and H7N9 influenza virus circulating in wild birds between 2006 and 2015, 35,604 samples were collected and tested. No H7N9 but four strains of the H11N9 subtype AIV were isolated, and phylogenetic analyses showed that the four H11N9 viruses were intra‐subtype and inter‐subtype reassortant viruses. A sequence analysis revealed that all six internal genes of A/wild bird/Anhui/L306/2014 (H11N9) originated from an H9N2 AIV isolated in Korea. The H9N2 strain, which is an inner gene donor reassorted with other subtypes, is a potential threat to poultry and even humans. It is necessary to increase monitoring of the emergence and spread of H11N9 AIV in wild birds.  相似文献   

13.
Outbreaks of highly pathogenic avian influenza (HPAI ) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI . Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata ). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross‐challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8‐infected ducks than in H5N6‐infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds.  相似文献   

14.
The first documented avian influenza virus subtype H16N3 was isolated in 1975 and is currently detectable in many countries worldwide. However, the prevalence, biological characteristics and threat to humans of the avian influenza virus H16N3 subtype in China remain poorly understood. We performed avian influenza surveillance in major wild bird gatherings across the country from 2017 to 2019, resulting in the isolation of two H16N3 subtype influenza viruses. Phylogenetic analysis showed these viruses belong to the Eurasian lineage, and both viruses presented the characteristics of inter‐species reassortment. In addition, the two viruses exhibited limited growth capacity in MDCK and A549 cells. Receptor‐binding assays indicated that the two H16N3 viruses presented dual receptor‐binding profiles, being able to bind to both human and avian‐type receptors, where GBHG/NX/2/2018(H16N3) preferentially bound the avian‐type receptor, while GBHG/NX/1/2018(H16N3) showed greater binding to the human‐type receptor, even the mice virulence data showed the negative results. Segments from other species have been introduced into the H16N3 avian influenza virus, which may alter its pathogenicity and host tropism, potentially posing a threat to animal and human health in the future. Consequently, it is necessary to increase monitoring of the emergence and spread of avian influenza subtype H16N3 in wild birds.  相似文献   

15.
Low pathogenic avian influenza viruses circulate in wild birds but are occasionally transmitted to other species, including poultry, mammals and humans. To date, infections with low pathogenic avian influenza viruses of HA subtype 6, HA subtype 7, HA subtype 9 and HA subtype 10 among humans have been reported. However, the epidemiology, genetics and ecology of low pathogenic avian influenza viruses have not been fully understood thus far. Therefore, persistent surveillance of low pathogenic avian influenza virus infections in wild birds and other species is needed. Here, we found a low pathogenic avian influenza virus of the subtype H13N2 (abbreviated as WH42) in black‐tailed gulls in China. All gene sequences of this H13N2 virus were determined and used for subsequent analysis. Phylogenetic analysis of the HA gene and NA gene indicated that WH42 was derived from the Eurasian lineage. We analysed the timing of the reassortment events and found that WH42 was a reassortant whose genes were transferred from avian influenza viruses circulating in Asia, Europe and North America. Additionally, WH42 possessed several molecular markers associated with mammalian virulence and mammalian transmissibility. Interestingly, we also found low but detectable haemagglutination inhibition antibodies against H13N2 low pathogenic avian influenza virus in serum samples collected from chickens. Taken together, our findings show that the H13 virus may have been introduced into poultry and that sustainable surveillance in gulls and poultry is required.  相似文献   

16.
A total of 15 dead or sick birds from 13 clinical outbreaks of avian influenza in ducks, geese, chickens and turkeys in 2017 in Bangladesh were examined. The presence of H5N1 influenza A virus in the affected birds was detected by RT‐PCR. Phylogenetic analysis based on full‐length gene sequences of all eight gene segments revealed that these recent outbreaks were caused by a new reassortant of clade 2.3.2.1a H5N1 virus, which had been detected earlier in 2015 during surveillance in live bird markets (LBMs) and wet lands. This reassortant virus acquired PB2, PB1, PA, NP and NS genes from low pathogenic avian influenza viruses mostly of non‐H9N2 subtypes but retained HA, NA and M genes of the old clade 2.3.2.1a viruses. Nevertheless, the HA gene of these new viruses was 2.7% divergent from that of the old clade 2.3.2.1a viruses circulated in Bangladesh. Interestingly, similar reassortment events could be traced back in four 2.3.2.1a virus isolates of 2013 from backyard ducks. It suggests that this reassortant virus emerged in 2013, which took two years to be detected at a broader scale (i.e. in LBMs), another two years until it became widely spread in poultry and fully replaced the old viruses. Several mutations were detected in the recent Bangladeshi isolates, which are likely to influence possible phenotypic alterations such as increased mammalian adaptation, reduced susceptibility to antiviral agents and reduced host antiviral response.  相似文献   

17.
Poultry movement is known to contribute to the dissemination of highly pathogenic avian influenza (HPAI) viruses. In Northern Vietnam, the illegal trade of poultry from China is a source of concern and is considered as responsible for the regular introduction of new H5N1 viruses. The general objective of this study was to get a better understanding of this illegal trade (organization, volume, actors involved and drivers) to propose adequate preventive and control options. The information was also used to qualitatively evaluate the risk of exposure of susceptible poultry to HPAI H5N1 virus introduced from China by illegally traded poultry. We found that the main products imported from China are spent hens, day‐old chicks (DOCs) and ducklings; spent hens being introduced in very large number. The drivers of this trade are multiple: economic (especially for spent hens) but also technical (demand for improved genetic potential for DOC and ducklings). Furthermore, these introductions also meet a high consumer demand at certain periods of the year. We also found that spatial dispersion of a batch of poultry illegally introduced from China is extensive and rapid, making any prediction of possible new outbreaks very hazardous. Finally, a risk mitigation plan should include measures to tackle the drivers of this trade or to legally organize it, to limit the threat to the local poultry sector. It is also essential for traders to be progressively better organized and biosecure and for hygienic practices to be enforced, as our study confirmed that at‐risk behaviours are still very common among this profession.  相似文献   

18.
Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)‐, 2.3.2.1c (H5N1)‐ and 2.3.4.4 (H5N6)‐infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a “mixing vessel” for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian–human influenza virus reassortment if they are also co‐infected with human influenza viruses.  相似文献   

19.
Despite a much higher rate of human influenza A (H7N9) infection compared to influenza A (H5N1), and the assumption that birds are the source of human infection, detection rates of H7N9 in birds are lower than those of H5N1. This raises a question about the role of birds in the spread and transmission of H7N9 to humans. We conducted a meta‐analysis of overall prevalence of H5N1 and H7N9 in different bird populations (domestic poultry, wild birds) and different environments (live bird markets, commercial poultry farms, wild habitats). The electronic database, Scopus, was searched for published papers, and Google was searched for country surveillance reports. A random effect meta‐analysis model was used to produce pooled estimates of the prevalence of H5N1 and H7N9 for various subcategories. A random effects logistic regression model was used to compare prevalence rates between H5N1 and H7N9. Both viruses have low prevalence across all bird populations. Significant differences in prevalence rates were observed in domestic birds, farm settings, for pathogen and antibody testing, and during routine surveillance. Random effects logistic regression analyses show that among domestic birds, the prevalence of H5N1 is 47.48 (95% CI: 17.15–133.13, P < 0.001) times higher than H7N9. In routine surveillance (where surveillance was not conducted in response to human infections or bird outbreaks), the prevalence of H5N1 is still higher than H7N9 with an OR of 43.02 (95% CI: 16.60–111.53, P < 0.001). H7N9 in humans has occurred at a rate approximately four times higher than H5N1, and for both infections, birds are postulated to be the source. Much lower rates of H7N9 in birds compared to H5N1 raise doubts about birds as the sole source of high rates of human H7N9 infection. Other sources of transmission of H7N9 need to be considered and explored.  相似文献   

20.
Asian‐origin H5N8 highly pathogenic avian influenza (HPAI) viruses of the H5 Goose/Guangdong/96 lineage, clade 2.3.4.4 group B, reached South Africa by June 2017. By the end of that year, 5.4 million layers and broiler chickens died or were culled, with total losses in the poultry industry estimated at US$ 140 million, and thousands of exotic birds in zoological collections, endangered endemic species and backyard poultry and pet birds also perished. The 2017 H5N8 HPAI outbreaks were characterized by two distinct spatial clusters, each associated with specific reassortant viral genotypes. Genotypes 1, 2, 3 and 5 were restricted to the northern regions, spanning the provinces of Limpopo, Gauteng, North West, Mpumalanga, KwaZulu‐Natal and Free State. The second, much larger cluster of outbreaks was in the south, in the Western and Eastern Cape provinces, wherein 2017 and 2018 outbreaks were caused solely by genotype 4. The last confirmed case of H5N8 HPAI in the northern region in 2017 was in early October, and the viruses seemed to disappear over the summer. However, starting in mid‐February 2018, H5N8 HPAI outbreaks resurged in the north. Viruses from two of the eight outbreaks were sequenced, one from an outbreak in quails (Coturnix japonica) in the North West Province, and another from commercial pullets in the Gauteng province. Phylogenetic analysis identified the viruses as a distinct sixth genotype that was most likely a new introduction to South Africa in early 2018.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号