首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

2.
The Euler-Knopp transformation is considered in terms of the problems of regularity and acceleration of the rate of convergence. The object of study is the hypergeometric series
$ _n F_{n - 1} (a;b;z) = \sum\limits_{k = 0}^\infty {\frac{{(a_1 )_1 \cdots (a_n )_k }} {{(b_1 )_k \cdots (b_{n - 1} )_k }}} \frac{{z^k }} {{k!}} = \sum\limits_{k = 0}^\infty {\lambda _k z^k } . $ _n F_{n - 1} (a;b;z) = \sum\limits_{k = 0}^\infty {\frac{{(a_1 )_1 \cdots (a_n )_k }} {{(b_1 )_k \cdots (b_{n - 1} )_k }}} \frac{{z^k }} {{k!}} = \sum\limits_{k = 0}^\infty {\lambda _k z^k } .   相似文献   

3.
Uniform Approximation of Nonperiodic Functions Defined on the Entire Axis   总被引:1,自引:1,他引:0  
Using the following notation: C is the space of continuous bounded functions f equipped with the norm , V is the set of functions f such that , the set E consists of fCV and possesses the following property:
is summable on each finite interval, we establish some assertions similar to the following theorem: Let 0$$ " align="middle" border="0"> ,
Then for fV the series
uniformly converges with respect to and the following equality holds:
This theorem develops some results obtained by Zubov relative to the approximation of probability distributions. Bibliography: 4 titles.  相似文献   

4.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

5.
Let L denote the space of measurable 1-periodic essentially bounded functionsf(x) with ∥f∥=vrai sup ¦f(x)¦,S k (f, x) thek-th partial sum of the Walsh-Fourier series off(x),L k thek-th Lebesgue constant. The following theorem is proved. Theorem. Letλ={λ K } be a sequence of nonnegative numbers, $$\left\| \lambda \right\|_1 = \mathop \sum \limits_{k = 1}^\infty \lambda _k< \infty ,\left\| \lambda \right\|_2 = (\mathop \sum \limits_{k = 1}^\infty \lambda _k^2 )^{1/2} ,m = log[(\left\| \lambda \right\|_1 /\left\| \lambda \right\|_2 )]$$ .Then for an arbitrary function f∈L the following inequalities hold true $$\begin{gathered} \left\| {\mathop \sum \limits_{k = 1}^\infty \lambda _k \left| {S_k (f,x)} \right|} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - 2m]} + c)\left\| f \right\|, \hfill \\ \hfill \\ \mathop \sum \limits_{k = 1}^\infty \lambda _k \left\| {S_k (f)} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - m]} + c)\left\| f \right\| \hfill \\ \end{gathered} $$ , where[y] denotes integral part of a number y>0 and c is an absolute constant. A corollary of the above theorem is that for each functionfεL the Lebesgue estimate can be refined for a certain sequence of indices, while the growth order of Lebesgue constants along that sequence can be arbitrarily close to the logarithmic one. “In the mean”, however, the Lebesgue estimate is exact. A further corollary deals with strong summability.  相似文献   

6.
In this paper, we consider a central limit theorem for the sequence of stationary m-dependent random variables, the variance of which is possibly infinite. Theorem. Let {Xn, n=l, 2,...} be a sequence of stationary m-dependent random variables with means zero. The following conditions are satisfied. (i) \[{M^2}\int_{{\text{|}}{X_1}| > M} {dP} /\int_{{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] (ii) \[\int_{\{ {X_1}| < M,|{X_i}| < M} {X_1^{}} {X_i}dP/\int_{|{X_1}| < M} {X_1^2} dP \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (M \to \infty )\] then there are constants Bsubsub>0, such that \[\frac{1}{{{B_n}}}\sum\limits_{i = 1}^n {{X_1}} \] converges in distribution N(0,1).  相似文献   

7.
In analysis of p-L-L with tangent characteristic and frequency modulation input, we have obtained the following two types of the phase looked loop equation. \[\begin{array}{l} \frac{{{\partial ^2}\varphi }}{{\partial {t^2}}} + \alpha \frac{{d\varphi }}{{dt}} + \gamma \tan \varphi = {\beta _1} + {\beta _2}(\cos {\Omega _M}t + {\Omega _M}\sin {\Omega _M}t){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (I)\\frac{{{\partial ^2}\varphi }}{{\partial {t^2}}} + (\alpha + \eta {\sec ^2}\varphi )\frac{{d\varphi }}{{dt}} + \gamma \tan \varphi = {\beta _1} + {\beta _2}(\cos {\Omega _M}t - {\Omega _M}\sin {\Omega _M}t){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (II) \(\alpha > 0,\gamma > 0,\eta > 0,{\beta _1} > 0,{\beta _2} > 0,{\Omega _M} > 0) \end{array}\] In this paper, our aim is to explain the usual qualitative method and Lyapunov's function method, by which the existence of a periodic solution of (I), (II) is established. In addition, we especially point out: How is to construct the Lyapunovas function for the nonlinear and nonairtoiiomous system? This is a very important problem.  相似文献   

8.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

9.
We obtain the weighted sum identities for ■(-1)~kkζ(k,s-k),■k kζ(2k,2s-2k),■kkζ(2k+1,2s-2k-1),■k~2kζ(2k,2s-2k) and ■k~2kζ(2k+1,2s-2k-1).  相似文献   

10.
In this paper operator functions of type
  相似文献   

11.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

12.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

13.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

14.
Existence, uniqueness, and ergodicity are proved for a stationary distribution for a service system having countably many servomechanisms with input flow rate μk depending on the number k of servomechanisms occupied, and with arbitrary (identical) distribution of the service time with finite mean μ, under the condition \(\mu \mathop {\overline {\lim } }\limits_{k \to \infty } \frac{{\lambda _k }}{{k + 1}}< 1\) . For this system we have, in particular, Erlang's formula $$p_k (t)\mathop \to \limits_{k + \infty } p_k = \frac{{\lambda _0 ...\lambda _{k - 1} \mu ^k }}{{k!}}p_0 ,k = 0,1,...,p_0^{ - 1} = \sum\nolimits_{k = 0}^\infty {\frac{{\lambda _0 ...\lambda _{k - 1} \mu ^k }}{{k!}}} ,\lambda _{ - 1} = 1.$$   相似文献   

15.
Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
0, \mathop {\lim }\limits_{x \to + 0} \Psi (x,\mu ) = {\rm A}, \mu< 0, \hfill \\ \end{gathered}$$ " align="middle" vspace="20%" border="0">  相似文献   

16.
17.
It is shown that the following three limits
  相似文献   

18.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

19.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

20.
Для заданной на едини чной окружности огра ниченной функцииω(ξ) рассматр ивается усложненная задача а ппроксимации аналит ическими функциями: $$\mathop {\inf }\limits_{\varphi \in H^\infty } \left[ {\left\| {\omega - \varphi } \right\| + \mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k \left| {\lambda _k } \right|} \right],$$ где ∥·∥ понимается вL ,ε k ≧0 — заданные чис ла, $$\mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k< + \infty ,\varphi (z) = \mathop \Sigma \limits_{k = 0}^\infty \lambda _k z^k .$$ Доказывается, что при всех достаточно малы хε k экстремальной в этой задаче будет функция обычного наилучшего приближения (та же, что и приε k =0,k=0, 1, ...). В частности, при $$\omega (\zeta ) = \frac{{\gamma _0 }}{{\zeta ^n }} + \frac{{\gamma _1 }}{{\zeta ^{n - 1} }} + ... + \frac{{\gamma _{n - 1} }}{\zeta }$$ экстремальной оказы вается дробь Каратео дори—Фейера. Переход к двойственн ой задаче позволяет получить т очные оценки для клас са интегралов типа Коши, выделяемого огранич ениями, наложенными на велич ины коэффициентов ря да Тейлора.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23