首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
MgB2 中的超导电性   总被引:4,自引:0,他引:4  
2001年1月发现的MgB 2 超导体,其超导转变温度高达39K,是所有金属间化合物及合金超导体中最高的.它的结构简单,制造成本低,很有可能被发展成实用超导体.综述了有关研究进展,其中包括:电子结构,高T c 机理和超导参数(Debye温度、电子比热系数、临界磁场、相干长度、穿透深度、能隙、临界电流和磁通蠕动速率).进而讨论与输电应用相关的问题.  相似文献   

2.
采用射频磁控溅射方法,在Si\MgO衬底上制备了MgB2薄膜,通过X射线衍射图分析了不同退火温度对薄膜结构性质的影响;用直流四探针法对其阻温特性进行了研究.结果表明,由于膜中多种成分的相互渗透,造成了低温下电子的相互关联,导致薄膜的阻温特性在175.9K时发生了金属-绝缘转变.在Mott模型和Anderson模型下对此现象进行了解释.  相似文献   

3.
本本文报道了基于混合物理化学气相沉积方法制备高质量干净极限MgB2薄膜和碳掺杂MgB2薄膜的最新结果.c轴外延干净的MgB2薄膜具有高达41.4K的超导转变温度,低于0.3μΩcm的正常态剩余电阻率.样品处于干净极限.薄膜表面RMS粗糙度小于5nm,在150nm宽的纳桥上测量到了大于1×108A/cm2的临界电流密度,接近MgB2,材料理论上的拆对电流密度,同样的结果也从对相同样品的磁性测量中推导得到.利用甲烷作为碳源,基于改进的热丝辅助混合物理化学气相沉积装置,高性能碳掺杂MgB2薄膜得以成功实现.不同程度的碳掺杂调制了MgB2双能带的带内和带间散射,进而明显增强了薄膜的上临界场.在重碳掺杂MgB2薄膜样品中,平行于样品表面的上临界场分量,Hc2//ab在临界温度(27K)附近对温度的斜率,-dHc2//ab/dT达到了3 T/K,暗示了样品具有非常高的上临界场Hc2//ab(0).碳掺杂同时使得样品的磁通钉扎能力得到很大增强.高场下具有比干净样品高出数个量级的临界电流密度,和更高的不可逆场.  相似文献   

4.
粉末套管法制备碳掺杂MgB2线材及其超导电性   总被引:1,自引:0,他引:1  
采用原位粉末套管法制备了无定形碳掺杂MgB2/Nb/Cu超导线材。利用扫描电镜、输运法测试和磁测法等手段分析了无定形碳掺杂对超导线材的微观结构和超导电性的影响。结果表明,无定形碳掺杂降低了线材的临界转变温度,但可以显著提高超导线材的临界磁场和临界电流密度,750℃处理线材在20K下的不可逆场达到5.2T。实验结果表明,采用无定形掺杂原位粉末套管法可以制备出具有高临界电流密度的MgB2线材。  相似文献   

5.
报道了采用电子束蒸发技术实现MgB2薄膜制备的实验工作。通过蒸镀B膜和Mg/B多层膜两种前驱体,分别经高温区(~900℃)和中温区(~700℃)退火处理后成功获得了高质量的MgB2薄膜样品。对样品的超导性能、晶体结构和表面形貌进行了详细的测量和表征,并对两类样品性质上所表现出的差异进行了分析。此外,还报道了在薄膜制备基础上利用微加工技术实现的超导微波谐振器的结果。  相似文献   

6.
计入短波声子的倒逆过程和电子的屏蔽效应,推导出电子-声子相互作用常数N(0)V的表达式,并利用有关的实验数据计算出N(0)V=0.309,Debye温度为798.45 K,纵向Debye温度ΘDL为1 137.3 K.以ΘDL取代BCS Tc公式中的ΘD,求得Tc=38.8 K,该值与实验结果符合得很好.研究表明,对MgB2的超导有贡献的主要是纵向声子.  相似文献   

7.
采用脉冲激光沉积的方法在 Al2O3(0001)基片上先生成 Mg-B 混和薄膜,然后采用原位后退火的方法生成 MgB2 超导薄膜,采用磁测量(M-T)、X射线衍射、扫描电子显微镜技术分析了各种沉积及退火条件对 MgB2 超导薄膜表面形貌、晶体结构、超导电性的影响。在沉积温度为 200 ℃,退火时间 5min 时,改变退火温度得到一组薄膜,研究退火温度对超导薄膜性质的影响,得到了转变温度-退火温度曲线。在退火温度为 670℃、720℃ 时,得到了最高的临界转变温度 Tc=33K,X射线衍射结果表明此时的薄膜有 c 轴取向。同时比较了在 200℃ 下沉积,在 670℃ 下分别退火不同时间的薄膜的超导性质。还比较了分别在不同温度下沉积,然后在 670℃ 下退火 5min 的薄膜的超导性质。结果表明,沉积温度和退火温度、退火时间极大的影响了薄膜的各种性质。  相似文献   

8.
报道了关于 MgB2 超导体制备过程中的退火效应和热稳定性的实验研究。把硼片在不同的温度 Mg 气氛中退火不同时间得到 MgB2,制备样品的测量结果显示制备 MgB2 的合适温度范围是 700~1000℃,并且较高的制备温度下只需要相对短的退火时间内就能得到较高转变温度的样品。热稳定性实验的结果显示在没有 Mg 的气氛中 MgB2 在 700℃ 下是稳定的,从 800℃ 开始分解,直到完全失去超导电性。实验还观测到利用 MgB2 混合物薄膜前驱代替硼片制备 MgB2 时,在 600℃ 退火时样品就显示超导电性。  相似文献   

9.
用混合物理化学气相沉积(Hybrid physical-chemical vapor deposition 简称为 HPCVD)法在Mg衬底上原位制备出MgB2超导薄膜样品。超导起始转变温度Tc(onset)=39.5K,SEM(Scanning Electron Microscopy)图显示晶型结构为六方形,晶粒生长较为致密。样品的X射线衍射分析表明,MgB2薄膜是多晶的,没有择优方向。晶粒大小约为400nm~1μm。结果表明HPCVD技术在Mg表面直接沉积MgB2薄膜是可行的,对Mg原料的节约和MgB2线材的制备具有一定优势。  相似文献   

10.
采用原位法粉末装管工艺制备了MgB2-xCx/Nb/Cu单芯线材.通过X射线衍射(XRD)、扫描电镜(EMS)和物性测试仪(PPMS)等手段研究了无定形C掺杂对线材微观结构及超导电性的影响.结果显示,随着C掺杂量的增加,进入MgB2晶格的C含量增加,MgB2层间结构不变.样品性能达到实用化超导磁体要求,在温度30 K外场0.2 T条件下,C掺杂量x=0,0.05,0.10,0.15的样品临界电流密度分别达8.1×104,1.7×105,1.6×105和1.0×105A/cm2.实验表明最佳C掺杂量x在0.05与0.10之间.  相似文献   

11.
In January of 2001 the superconductivity of the compound MgB2 with a critical temperature Tc of up to 39 K was discovered. This Tc is the highest in all intermetallic compound and alloy superconductors. MgB2 has a simple structure and its manufacturing capital cost is lower, therefore it could become a practical superconductor in the future. The recent progress is reviewed here which covers the progress in electronic structure, high Tc mechanism, superconducting parameters (Debye temperature, specific heat coefficient of electron, critical fields, coherent length, penetration depth, energy gap, critical current and relaxation rate of flux). Moreover the issue on power transmission is discussed.  相似文献   

12.
作者在BCS理论对于超导体电声耦合组成库珀对解释超导电性的基础上,从MgB2能带结构出发,通过紧束缚近似理论对其的详细计算和系统分析,比较合理的解释了MgB2的超导电性。  相似文献   

13.
该文运用物相衍射分析中的多相物质衍射强度公式对所制备的超导MgB2薄膜的相含量进行了研究,算出了多相衍射相关的物理量,获得了MgO在MgB2超导膜中的相含量.在计算过程中。作者作了适当的近似,并在此基础上,分析了相含量对薄膜质量的影响.  相似文献   

14.
MgB2适合于制备约瑟夫森结,在超导电子学领域有很好的应用前景。制备高质量的MgB2薄膜至关重要,应用Mg-B/Mg-B-O体系的相图指导MgB2薄膜生长意义重大。总结MgB2相体系及相关系,详细对比分析Mg-B/Mg-B-O体系的热力学相图,总结分析富氧区杂项MgO的生成机理及其对MgB2薄膜质量和性能的影响,研究分析有氧体系下Mg-B/Mg-B-O热力学相图对MgB2薄膜材料制备生长的指导意义,探讨HPCVD环境下采用原位生长技术制备MgB2超导薄膜时热力学相图的指导作用及相关制备工艺。  相似文献   

15.
The origin of multiple superconducting gaps in MgB2   总被引:3,自引:0,他引:3  
Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.  相似文献   

16.
Superconductivity in two-dimensional CoO2 layers   总被引:4,自引:0,他引:4  
Since the discovery of high-transition-temperature (high-T(c)) superconductivity in layered copper oxides, many researchers have searched for similar behaviour in other layered metal oxides involving 3d-transition metals, such as cobalt and nickel. Such attempts have so far failed, with the result that the copper oxide layer is thought to be essential for superconductivity. Here we report that Na(x)CoO2*yH2O (x approximately 0.35, y approximately 1.3) is a superconductor with a T(c) of about 5 K. This compound consists of two-dimensional CoO2 layers separated by a thick insulating layer of Na+ ions and H2O molecules. There is a marked resemblance in superconducting properties between the present material and high-T(c) copper oxides, suggesting that the two systems have similar underlying physics.  相似文献   

17.
基于双带模型引入非电子-声子相互作用,利用自治近似方法讨论了硼化镁超导体的超导转变温度与掺杂之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号