首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Unsteady vortex flow around a fixed solid body in a viscous incompressible fluid is investigated for the case where the velocity field is assumed to vanish at infinity. Consideration of the asymptotic pressure field far from the body leads to a new formula for the force acting on the body, which is given by a volume integral whose integrand is linear with respect to the vorticity and does not include the velocity. This is facilitated by using a renormalized Green's function introduced by Howe. The formula offers an interesting interpretation for the force in the case of inviscid vortex rings moving near the body: that is, the force is proportional to the rate of change of volume flux through the rings of an imaginary potential flow around the body. The relation of the present subject to the excitation of acoustic waves by vortex motion moving near a compact body is considered.  相似文献   

3.
4.
Huang  Hsin-Fu  Huang  Kun-Hao 《Meccanica》2019,54(14):2151-2168
Meccanica - Analytical solutions to the microrotation, linear velocity, and volume flow rate are developed for electrokinetic diffusioosmotic flows of micropolar liquids in slit microchannel...  相似文献   

5.
In the flow of a suspension in a channel with porous walls, when the size of particles of a suspended phase is much less than the width of the channel but greatly exceeds the size of the pores (in particular, in the flow of blood in the plasma separator used in an artificial kidney system [1, 2]), phenomena are observed which apparently cannot be satisfactorily explained by means of the well-known solutions of problems on the motion of a Newtonian fluid [3]. For example, the flow rate of the liquid phase of the suspension through the walls depends on the velocity of the main flow and does not depend on the pressure drop on the wall at fairly high values of it [1, 2]. The present study gives below the formulation and an approximate solution, which explains this effect, of the problem of an incompressible two-phase suspension in a long slit with porous walls which are impermeable in relation to the suspended phase and through which the liquid phase is pumped. Certain effects are taken into account which are caused by the high volume concentration of the suspended phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 37–43, November–December, 1987.  相似文献   

6.
The laminar flow through a leaky tube is investigated, and the momentum and conservation of energy equations are solved analytically. By using the Hagen-Poiseuille velocity profile and defining unknown functions for the axial and radial velocity components, the pressure and mass transfer equations are obtained, and their profiles are plotted according to different parameters. The results indicate that the axial velocity, the radial velocity, the mass transfer parameter, and the pressure in the tube decrease as the fluid moves along the tube.  相似文献   

7.
Peristaltic flow of Herschel-Bulkley fluid in an inclined tube is analyzed. The velocity distribution, the stream function and the volume flow rate are obtained. Also, when the yield stress ratio τ→0, and when the inclination parameter α=0 and the fluid parameter n=1, the results agree with those of Jaffrin and Shapiro (Ann. Rev. Fluid Mech. 3 (1971) 13) for peristaltic transport of a Newtonian fluid in a horizontal tube. The effects of τ and n on the pressure drop and the mean flow are discussed through graphs. Furthermore, the results for the peristaltic transport of Bingham and power law fluids through a flexible tube are obtained and discussed. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study of the effects of Herschel-Bulkley fluid on the flow characteristics.  相似文献   

8.
Pulsatile flow of a viscous fluid between two permeable beds is analyzed. The flow between and through the permeable beds are governed by the Navier-Stokes equations and Darcy's law, respectively. The velocity field and the volume flux are obtained for several cases and discussed. Further, when the permeability parameter k→0, the results agree with those of Wang (J. Appl. Mech. 38 (1971) 553).  相似文献   

9.
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.  相似文献   

10.
The present investigation is devoted to the study of fully developed mixed convective flow through a vertical porous channel. The lateral variations of porosity and thermal diffusivity in the bed near the wall, are approximated by exponential functions. The correlation between permeability and porosity is brought through Kozney-Carman approximation. The volume averaged one dimensional low speed momentum equation proposed by Vafai is employed for the analysis of the problem. Results are obtained for steady heating of ascending cold fluid and steady cooling of ascending hot fluid. For the above physical situations it is observed that the heat transfer rate, and ratio of friction factor increases with increase in porous parameter, whereas the ratio of mass flow rate decreases with increase in porous parameter. The velocity profiles exhibit hydrodynamic channelling and peak velocity shifts towards the wall for higher values of the porous parameter. For steady heating of ascending could fluid increase in Rayleigh number enhances the heat transfer rate, and mass flow rate, while it reduces the ratio of friction factor. An opposite trend is observed for the case of steady cooling of ascending hot fluid.  相似文献   

11.

The purpose of this investigation is to theoretically shed some light on the effect of the unsteady electroosmotic flow (EOF) of an incompressible fractional second-grade fluid with low-dense mixtures of two spherical nanoparticles, copper, and titanium. The flow of the hybrid nanofluid takes place through a vertical micro-channel. A fractional Cattaneo model with heat conduction is considered. For the DC-operated micropump, the Lorentz force is responsible for the pressure difference through the microchannel. The Debye-Hükel approximation is utilized to linearize the charge density. The semi-analytical solutions for the velocity and heat equations are obtained with the Laplace and finite Fourier sine transforms and their numerical inverses. In addition to the analytical procedures, a numerical algorithm based on the finite difference method is introduced for the given domain. A comparison between the two solutions is presented. The variations of the velocity heat transfer against the enhancements in the pertinent parameters are thoroughly investigated graphically. It is noticed that the fractional-order parameter provides a crucial memory effect on the fluid and temperature fields. The present work has theoretical implications for biofluid-based microfluidic transport systems.

  相似文献   

12.
The problem of the dispersed particulate-fluid two-phase flow in a channel with permeable walls under the effect of the Beavers and Joseph slip boundary condition is concerned in this paper. The analytical solution has been derived for the longitude pressure difference, stream functions, and the velocity distribution with the perturbation method based on a small width to length ratio of the channel. The graphical results for pressure, velocity, and stream function are presented and the effects of geometrical coefficients, the slip parameter and the volume fraction density on the pressure variation, the streamline structure and the velocity distribution are evaluated numerically and discussed. It is shown that the sinusoidal channel, accompanied by a higher friction factor, has higher pressure drop than that of the parallel-plate channel under fully developed flow conditions due to the wall-induced curvature effect. The increment of the channel’s width to the length ratio will remarkably increase the flow rate because of the enlargement of the flow area in the channel. At low Reynolds number ranging from 0 to 65, the fluids move forward smoothly following the shape of the channel. Moreover, the slip boundary condition will notably increase the fluid velocity and the decrease of the slip parameter leads to the increment of the velocity magnitude across the channel. The fluid-phase axial velocity decreases with the increment of the volume fraction density.  相似文献   

13.
旋转流场中的流体流动比较复杂,特别是在高转速、微尺度工况时,流场中的流体流态及其判断方法缺乏完备的理论模型. 选择干气密封作为高速旋转流场的研究对象,以开启力和泄漏量作为宏观特性表征指标参数,选择剪切(周向)、径向及轴向速度分量对速度流场进行介观表述,通过Fluent软件仿真计算大跨距转速(低转速至超高转速)时的宏观、介观指标参数,研究密封性能指标参数与速度场间的内在逻辑关系. 结果表明:低速旋转流场中的轴向速度分量较小,可忽略不计,转速升高会促使轴向速度分量持续增大,当转速持续增大并超过某一临界值时,轴向速度分量会出现迅速升高的情形;轴向速度分量的变化情形与微尺度流场(开启力和泄漏量)波动密切相关,是影响旋转流场流态的关键性指标参数,也是引起宏观流场特性变化的主要因素;径向速度分量的变化情形与微尺度流场泄漏量的变化规律基本一致,随着转速的增大,泄漏量的宏观性能反馈要早于开启力波动的出现. 基于以上研究,同时根据管道雷诺数、流量因子判定模型及流体力学基本理论,尝试提出了基于三维速度分量的针对旋转流场流态的椭球判定模型.   相似文献   

14.
白羽  万飒  张艳 《计算力学学报》2023,40(4):546-551
研究了非稳态分数阶Oldroyd-B流体在多孔介质中通过楔形拉伸板的驻点流动问题。基于分数阶Oldroyd-B流体的本构模型建立了动量方程,并在其中引入了浮升力和驻点流动特征。此外,考虑了具有热松弛延迟时间的修正的分数阶Fourier定律,并将其应用于能量方程和对流换热边界条件。接着,采用与L1算法相结合的有限差分法求解控制偏微分方程。最后,分析了相关物理参数对流动的影响。结果表明,随着楔角参数的增加,流体受到的浮升力增大,导致速度加快;达西数越大,介质的孔隙度变大,流体的流动越快;此外,温度分布先略有上升后明显下降,这表明Oldroyd-B流体具有热延迟特性。  相似文献   

15.
16.
A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer–aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer–aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a “laterally bounded” system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer–aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer’s radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer–aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated.  相似文献   

17.
Hayat  T.  Muhammad  K.  Alsaedi  A. 《应用数学和力学(英文版)》2021,42(12):1787-1798

The melting phenomenon in two-dimensional (2D) flow of fourth-grade material over a stretching surface is explored. The flow is created via a stretching surface. A Darcy-Forchheimer (D-F) porous medium is considered in the flow field. The heat transport is examined with the existence of the Cattaneo-Christov (C-C) heat flux. The fourth-grade material is electrically conducting subject to an applied magnetic field. The governing partial differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by appropriate transformations. The solutions are constructed analytically through the optimal homotopy analysis method (OHAM). The fluid velocity, temperature, and skin friction are examined under the effects of various involved parameters. The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter, porosity parameter, and Forchheimer number. The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number, magnetic parameter, and thermal relaxation parameter. Furthermore, the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters, thermal relaxation parameter, and Forchheimer number.

  相似文献   

18.
The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature,and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases.  相似文献   

19.
A new similarity transformation has been devised for extensive studies of accelerating non-Newtonian film flow. The partial differential equations governing the hydrodynamics of the flow of a power-law fluid down along an inclined plane surface are transformed into a set of two ordinary differential equations by means of the dimensionless velocity component approach. Although the analysis is applicable for any angle of inclination (0<π/2), the resulting one-parameter problem involves only the power-law index n. Nevertheless, physically essential quantities, like the velocity components and the skin-friction coefficient, do depend on and relevant relationships are deduced between the vertical and inclined cases. Accurate numerical similarity solutions are provided for n in the range from 0.1 to 2.0. The present method enables solutions to be obtained also for highly pseudo-plastic films, i.e. for n below 0.5. The mass flow rate entrained into the momentum boundary layer from the inviscid freestream is expressed in terms of a dimensionless mass flux parameter Φ, which depends on the dimensionless boundary layer thickness and the velocity components at the edge of the viscous boundary layer. Φ, which is thus an integral part of the similarity solution, turns out to decrease monotonically with n. This parameter is of particular relevance in the determination of the streamwise position at which the entire freestream has been entrained and viscous stresses prevail all the way to the free surface of the film. A short-cut method to facilitate rapid and yet accurate estimates of the mass flux parameter is developed to this end.  相似文献   

20.
An analytical study of the entropy generation rate and heat transfer in a flow of immiscible couple stress fluids between two horizontal parallel plates under a constant pressure gradient is performed. Both plates are kept at different and constant temperatures higher than that of the fluid. The Stokes couple stress flow model is employed. The classical no-slip condition is prescribed at the plates, and continuity of the velocity, rotation, couple stress, shear stress, temperature, and heat flux is imposed at the interfaces. The velocity and temperature distributions are found analytically, and they are used to compute the entropy generation number and Bejan number. The effects of the couple stress parameter and Reynolds number on the velocity, temperature, entropy generation number, and Bejan number are investigated. It is observed that the friction near the plates in couple stress fluids decreases as the couple stress increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号