首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of cemented carbides strongly depend on the WC grain size and it is thus crucial to control coarsening of WC during processing. The aim of this work was to study the effect of sintering at different carbon activities on the final microstructure, as well as the coarsening behavior of the WC grains, including the size distribution and the shape of WC grains. These aspects were investigated for five WC–Co alloys sintered at 1410 °C for 1 h at different carbon activities in the liquid, in the range from the graphite equilibrium (carbon activity of 1) to the eta (M6C) phase equilibrium (carbon activity of 0.33). The grain size distribution was experimentally evaluated for the different alloys using EBSD (electron backscatter diffraction). In addition, the shape of the WC grains was evaluated for the different alloys. It was found that the average WC grain size increased and the grain size distribution became slightly wider with increasing carbon activity. Comparing the two three-phase (WC–Co–eta and WC–Co–graphite) alloys a shape change of the WC grains was observed with larger grains having more planar surfaces and more triangular shape for the WC–Co–graphite alloy. It was indicated that in alloys with a relatively low volume fraction of the binder phase the WC grain shape is significantly affected by impingements. Moreover, after 1 h of sintering the WC grains are at a non-equilibrium state with regards to grain morphology.  相似文献   

2.
1IntroductionWCCocompositepowdersarethemainrawmaterialsforproducingcementedcarbidecutingtools.Inordertoimprovetheirtoughne...  相似文献   

3.
WC based hardmetals are widely used in applications where abrasion resistance is important.This paper describes the utility of scratch tests as model single point abrasion tests to evaluate the response of WC/Co hardmetals to the type of conditions that will occur in abrasion. The different types of experiments were single and multiple pass tests, and multiple pass tests in corrosive media.The resultant scratches were observed by stepwise SEM imaging, stereographic image correlation and 3D reconstruction, and EBSD analysis.It was found that many of the features observed in the model tests paralleled those seen in other abrasive tests on WC/Co materials such as build up of plastic damage in WC grains, fracture and fragmentation of WC grains, deformation of the Co binder phase and re-embedment of WC grains in the surface layers of the material. For tests in the presence of corrosive media, the binder phase was removed early in the sequence of scratches, leading to breakdown of the structure of the material.Stereo reconstruction was shown to be a valuable way of visualising and measuring the physical dimensions of scratches, providing a future route for the quantification of damage in these model experiments.  相似文献   

4.
含板状WC晶粒硬质合金的强韧化机制研究   总被引:1,自引:0,他引:1  
通过加入2.5%板状WC晶种,制备含板状WC晶粒硬质合金,研究其强韧化机制。结果表明:WC晶粒的各向异性和形状改变诱导的Hall-Petch硬化是硬质合金硬度增加的主要原因。加入板状晶种后,裂纹在扩展过程中出现了明显的穿晶断裂和Co相桥接,增加了裂纹偏转,硬质合金的抗弯强度大大提高。不同Co含量和初始WC粉体粒度制备的含板状WC晶粒硬质合金,穿晶断裂、Co相桥接和裂纹偏转对抗弯强度增加的贡献不同。  相似文献   

5.
《Acta Materialia》2005,53(17):4677-4685
Growth behavior of two different types of grains, faceted and rounded, in the same liquid matrix has been studied in the 70(25TiC–75WC)–30Co (wt%) system. Powder samples were sintered above the eutectic temperature for various times under a carbon saturated condition. (Ti,W)C grains with a rounded shape and WC grains with a faceted shape coexisted in the same Co-based liquid. With increasing sintering time the average size of (Ti,W)C grains increased continuously and very large WC grains appeared. The growth of rounded (Ti,W)C grains followed a cubic law indicating diffusion-controlled growth. On the other hand, the growth of the faceted WC grains resulted in a bimodal grain size distribution, showing abnormal grain growth. With increased initial size, however, abnormal growth of WC grains was suppressed. This growth behavior of WC grains could be explained using growth theories of faceted crystals and was also confirmed by a calculation using their growth equations. The present investigation thus shows that the growth behavior of one type of grain is not affected by the other type of grain in the same matrix and is governed only by whether the grain shape is faceted or rounded.  相似文献   

6.
烧结过程中WC晶粒形貌的变化   总被引:3,自引:3,他引:0  
吴志坚  袁红梅 《硬质合金》2011,28(6):351-357
采用粉末冶金工艺烧结了纯WC,制备了WC-10%Co硬质合金,利用JSM5600LV扫描电镜观察不同烧结温度下制备的试样WC颗粒/晶粒形貌。结果表明:纯WC进行烧结时,烧结过程中在表面张力的作用下,系统向能量最低趋势发展,WC晶粒保持球形或类球形;在有钴的存在下,界面张力状态发生了改变,为了达到系统的稳定状态,WC/Co接触界面向平直化发展,烧结温度达到共晶温度之后,在溶解-析出机理的作用下,WC晶粒有选择性长大,形状更加规则化,最终导致WC/Co界面平直。  相似文献   

7.
以08型WC与Co制成WC-10%Co试样条,脱蜡后分别于1 200﹑1 250﹑1 300﹑1 350℃进行烧结并分别保温1 h和5 h。采用扫描电镜观察烧结过程中WC晶粒形貌的变化,采用差热分析仪研究WC-10%Co的共晶温度。研究结果表明:WC-10%Co在低于共晶温度的烧结过程中发生了WC晶粒形貌由等轴形向棱边平直的多边形变化,并随着温度升高,晶粒尺寸增大。这表明在固相烧结时超细WC与钴相存在溶解析出过程,改变WC晶粒形貌并使晶粒长大。  相似文献   

8.
In the present investigation, the microstructure of nano tungsten carbide/cobalt (WC/Co) coating layers fabricated by detonation-gun spraying has been studied. Phase identification and three-dimensional distribution of constituent elements have been accomplished by using an ultra high-resolution transmission electron microscope (TEM) and a three-dimensional atom probe tomography (3D-APT), respectively. The microstructures of WC/Co coating layer containing superfine carbides were observed in various forms, i.e., unmelted, partially melted and fully melted regions. TEM and APT results revealed that the WC phase has been decomposed into crystalline W2C, W and complex amorphous phases during high temperature detonation spraying and rapid quenching process.  相似文献   

9.
采用粉末冶金制备技术,以粗WC粉末、Co粉和WC+Ni3Al预合金粉末为原料制备出WC-40vol%(Co—Ni,Al)硬质合金。利用扫描电镜和透射电镜研究了不同NbAl含量对WC-40vol%(Co—Ni3Al)硬质合金中WC晶粒形状的影响规律。结果表明:W在Co粘结相中的固溶度接近25.4wt%,而W在Ni,Al粘结相中的固溶度接近9.5wt%,随着NbAl含量的增加,粘结相对W的固溶度减小,合金中的WC晶粒圆钝和细小;WC晶粒表面上出现明显的台阶。相应的,延长烧结时间,WC—Co—Ni3Al硬质合金具有与WC—Co硬质合金相同的WC生长行为,WC-40vol%(Co—Ni3Al)硬质合金中的WC晶粒表面上的台阶处出现明显的刻面。  相似文献   

10.
《Scripta materialia》2003,48(5):635-639
WC–Co hard metals have faceted WC grains dispersed in a ductile cobalt-rich matrix. The effect of carbon (C) content on the shape of WC grain in the WC–Co metals during liquid-phase sintering is investigated in this work. The WC grain shape varies with the C content and, more importantly, the shape change occurs reversibly with the C content.  相似文献   

11.
超细硬质合金晶粒生长抑制剂VC、Cr_3C_2作用机理的研究   总被引:2,自引:2,他引:2  
本文以液相复合-连续还原碳化方法制备的掺杂有VC和Cr3C2抑制剂的纳米复合WC-10Co粉末为原料,采用真空烧结+低压处理的工艺制备超细WC-10Co硬质合金,运用原子力显微镜(AFM)和场发射扫描电镜(FESEM)确定VC和Cr3C2抑制剂在硬质合金中的分布,讨论其抑制晶粒生长的机理。一部分VC、Cr3C2抑制剂吸附在WC晶粒表面形成30nm~50nm的沉淀物,降低WC晶粒的表面能;一部分VC、Cr3C2溶解在Co相中,降低WC在液相中的溶解度;其余VC、Cr3C2沉积在WC晶界,从而有效地抑制WC晶粒的长大。  相似文献   

12.
NbC–24.5 wt.% Co cermets with up to 30 wt.% WC were obtained by solid state hot pressing at 1300 °C under a pressure of 45 MPa for 10 min and pressureless liquid phase sintering at 1360 °C for 60 min. The effect of WC addition on the microstructure and mechanical properties of NbC–Co based cermets was investigated. The hot pressed cermets exhibited interconnected and irregular niobium carbide (NbC) or (Nb,W)C grains, whereas the shape of the NbC grains changed from faceted with rounded corners to spherical, as the WC content increased in the pressureless sintered cermets. The undissolved WC increased with increasing WC addition. A clear core/rim structure was observed in the hot pressed cermets with 10–30 wt.% WC additions, whereas this structure was gradually eliminated when pressureless sintering. The hardness remains nearly constant whereas the fracture toughness slightly increases with increasing WC addition. The dissolution of WC in the Co binder and NbC grains, as well as the formation of a solid solution (Nb,W)C phase were supported by thermodynamic calculations.  相似文献   

13.
In this study, WC-Co composite powder was synthesized by two-step carbonization method using W, Co and C as raw materials. X-ray diffraction (XRD) showed that the η phase (Co6W6C) was kept at 1100 °C for 1 h under vacuum, and it could be completely carbonized into WC-Co composite powders. The surface morphology of WC-Co composite powders was analyzed by scanning electron microscope (SEM). The effects of η phase and second phase (W phase) on WC morphology and Co phase distribution were investigated. Electron backscattered diffraction (EBSD) was used to analyze WC-10 wt% Co cemented carbide particle distribution. Comparison of transverse rupture strength, hardness and fracture toughness of two kinds of WC-10 wt% Co cemented carbides synthesized by WC-Co composite powders + WC and WC + Co respectively, the cemented carbide of composite powders + WC increases the fracture toughness from 11.4 ± 0.3 MPa·m1/2 to 12.4 ± 0.3 MPa·m1/2.  相似文献   

14.
The WC–Co cermet bulks were prepared by spark plasma sintering (SPS) using powder mixtures with different-scaled WC particles. The SPS densification process was studied by calculating the current distribution between the powder sample and the die in the SPS system. The microstructures were characterized and compared for different samples by the WC grain size, Co mean free path and contiguity of WC grains. In spite of a weak effect of WC particle size on the SPS densification stages, the WC particle size plays a significant role in the homogeneity of the cermet microstructure. Good mechanical properties of the SPSed cermet were obtained with an optimized WC and Co particle-size combination. The effects of scale combination of WC and Co particles on the microstructure hence the properties of the SPSed cermet were discussed.  相似文献   

15.
研究了立方碳化物 Cr3C2、VC 以及稀土 La 添加剂对 WC-Co 合金中 WC 晶粒形貌以及合金硬度与韧性的影响。为了强化烧结过程中 WC 晶粒生长的驱动力,采用具有高烧结活性的纳米 W 和纳米 C 为原料。为了获得合金中 WC 晶粒的三维形貌,采用扫描电镜直接观察合金烧结体的自然表面。结果表明,合金添加剂对WC 晶粒形貌及其粒度分布特征以及合金的硬度与韧性有较大影响。由于均质三角棱柱形板状 WC 晶粒的形成,WC-10Co-0.6Cr3C2-0.06La2O3 合金具有极佳的硬度与韧性组合。讨论了合金中 WC 晶粒形貌的调控机制以及合金中 WC 晶粒形貌特征对合金性能的影响。  相似文献   

16.
Dual-scale and dual-morphology WC grained WC-8Co cemented carbides comprising triangular or hexagonal fine WC grains and plate-like coarse WC grains were synthesized by vacuum sintering using Co, flaky graphite, WC, and coarse W as the starting materials. The effects of fine WC particle sizes on microstructure, relative densities, and mechanical properties of the dual-scale and dual-morphology WC grained cemented carbides were investigated. The results revealed that the growth of plate-like coarse WC grains was further promoted with the decrease in the particle size of the added fine WC; hence, their aspect ratio increased. In addition, added fine WC led to the separation of plate-like coarse WC grains so as to break their oriented arrangement and prevent their face contact; hence, plate-like coarse WC grains were completely covered by the Co binder phase. Moreover, the addition of smaller particle size of fine WC contributed to more uniform Co binder phase. When 0.4-μm WC powders was added, the aspect ratio of plate-like coarse WC grains was greater than that of plate-like WC grained cemented carbides without the addition of fine WC. The dual-scale and dual-morphology WC grained cemented carbides by adding 0.4-μm fine WC exhibited good comprehensive mechanical properties, with a transverse rupture strength of 3645 MPa, a Rockwell hardness of 91.5 HRA, and a fracture toughness of 12.3 MPa∙m1/2.  相似文献   

17.
The microstructure of a binderless cemented carbide with < 0.5 wt% Co has been analysed using transmission electron microscopy (TEM) in combination with an electron energy loss spectroscopy (EELS) detector and an imaging filter. In particular, microstructural properties of the grain boundaries were studied. The analysis identified different kinds of grain boundaries in the material: boundaries between WC grains containing nanometre-thick layers of Co; WC-WC grain boundaries with perfect lattice matching and no or very small amounts of Co; and boundaries between WC and TiC grains containing high amounts of C, but no Co. The influence of the grain boundaries on the mechanical properties is discussed.  相似文献   

18.
The deformation and fracture behaviour of constituents of a WC-Co hardmetal were investigated by microcantilever bending technique. The compositions of FIB fabricated microcantilevers were: I) single grains of WC, II) WC grains of different orientations and III) the mixture of WC grains and Co phase. The crystallographic orientation of WC grains and the fracture surface of beams were studied by EBSD and SEM analyses, respectively. It was revealed that the elastic deformation depends mainly on the composition of the beams and the orientation of the WC grains. The Young's modulus of WC grains showed an orientation dependence with decreasing values from the basal (E~800 GPa) towards the prismatic orientations (E~500 GPa), which is in agreement with the theoretical predictions. The deformation behaviour of WC grains exhibited plasticity before their fracture with an average fracture strength of σ = 12.3 ± 3.8 GPa. It was found that the effect of dislocations and nanometre-sized defects (e.g. pores) plays an important role in the bending test of WC grains. Most of the WC/WC boundaries showed brittle failure with an average fracture strength of σ = 4.1 ± 2.5 GPa. It was concluded that the majority of the boundaries in the WC-Co composite are high energy WC/WC boundaries and their fracture strength is generally much lower than that of the WC grains.  相似文献   

19.
Influence of microstructure on ultraprecision grinding of cemented carbides   总被引:2,自引:2,他引:2  
The influence of microstructure on the ultraprecision grinding response of a series of cemented carbides for spherical mirrors was characterized by means of optical and laser interferometry, atomic force microscopy, scanning electron microscopy and X-ray diffraction. Surface roughness, form accuracy, grinding-induced residual stress and material removal behaviors were studied as a function of tungsten carbide (WC) grain size. In connection with the removal mechanisms in ultraprecision grinding, microindentations performed on each material showed similar deformation patterns, all in the plastic regime. The microstructure of WC-Co materials was found to have little influence on the nanometre surface roughness and submicron form accuracy. However, the X-ray stress measurements indicated that the microstructure of carbide materials had a significant influence on the grinding-induced residual stresses; i.e. an increase in grinding-induced residual compressive stress with an decrease in WC grain size. No grinding-induced cracks were observed in the ground cemented carbide surfaces. The material removal in ultraprecision grinding was considered to occur within the ductile regime. The formation of microgrooves and plastic flow regions via slip bands of WC grains along the cobalt binder without visible resultant microfracturing of WC grains were the dominant removal mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号