首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on drop size distribution and kinetic energy load of rainstorms are basic for rainfall erosivity indices. A simple and relatively inexpensive instrument was used to asses the instantaneous intensity and kinetic energy load of rainstorms in Hong Kong. Both the drop size and the instantaneous kinetic energy load of rainfall in Hong Kong are greater than in temperate and subtropical climates. The high kinetic energy results from the large size and greater number of raindrops falling per unit time. A high correlation between the kinetic energy of rainfall and the amount of rainfall allows for a convenient estimate of the energy load of storms from the amount of rainfall. Of more significance to the erosion process is the determination that about 74% of the total annual rainfall is erosive, containing about three‐quarters of the total annual energy load of the rains. The variability of rainfall parameters within a rainfall and from storm to storm is shown. The energy–intensity relationship, seasonal and annual distributions of rainfall erosivity are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

The modelling of soil loss and investigation of urban hydrology and wet weather pollution in Malaysia requires the definition of rainfall parameters for the region. In this study, an inexpensive method was applied to establish the influence of raindrop diameter on kinetics and rain intensity in Skudai, Peninsular Malaysia, as a prelude to wider regional research. Raindrop sizes vary from less than 1.2 mm to as big as 7.0 mm, with median raindrop diameters of 2.51 mm and a mean diameter of 2.56 mm. The median raindrop diameter–intensity relationship correlates strongly using power and exponential equations, with coefficients of determination of 0.75 and 0.73, respectively. The kinetic energy–intensity relationship fits an exponential function and also a linear equation with R2 values of 0.49 and 0.34, respectively. An average rain kinetic energy of 30 J m-2 mm-1 was recorded. This research leads to an objective reclassification of rainfall intensities in the region.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

3.
The rainfall erosivity plays a fundamental role in water soil erosion processes and it can be expressed by its kinetic power. At first in this paper, the raindrop‐size distributions measured, in the period June 2006–March 2014, by an optical disdrometer installed at the Department of Agricultural and Forestry Sciences of University of Palermo are aggregated into rainfall intensity classes, having different ranges, and the measured kinetic power values are determined. Measured kinetic power values are initially used for testing the applicability of the kinetic power‐rainfall intensity relationships proposed by Wischmeier and Smith ( 1978 ), used in Universal Soil Loss Equation (USLE), Brown and Foster ( 1987 ) (RUSLE), and McGregor et al. ( 1995 ) (RUSLE2). Then, the reliability of a theoretical relationship for estimating the kinetic power by rainfall intensity and median volume diameter is verified. Finally, using the literature available datasets, corresponding to measurements carried out by different techniques and in different geographical sites, the analysis demonstrated that the rainfall intensity is not sufficient to determine the rainfall kinetic power. On the contrary, the theoretically deduced relationship allows to reproduce adequately the kinetic power of all available datasets, demonstrating that the knowledge of both rainfall intensity and median volume diameter allows a reliable estimate of the rainfall erosivity.  相似文献   

4.
The relatively high cost of commercially available raindrop spectrometers and disdrometers has inhibited detailed and intensive research on drop size distribution, kinetic energy and momentum of rainfall which are important for understanding and modelling soil erosion caused by raindrop detachment. In this study, an approach to find the drop size distribution, momentum and kinetic energy of rainfall using a relatively inexpensive device that uses a piezoelectric force transducer for sensing raindrop impact response is introduced. The instrument continuously and automatically records, on a time‐scale, the amplitude of electrical pulses produced by the impact of raindrops on the surface of the transducer. The size distribution of the raindrops and their respective kinetic energy are calculated by analysing the number and amplitude of pulses recorded, and from the measured volume of total rainfall using a calibration curve. Simultaneous measurements of the instrument, a rain gauge and a dye‐stain method were used to assess the performance of the instrument. Test results from natural and simulated rainfalls are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Interception losses, rain and throughfall drop size spectra and kinetic energy were studied in four relatively undisturbed tropical forest ecosystems along a transect across the Central Andean Cordillera of Colombia at altitudes between 3000 and 1000 m above sea level. Interception amounts ranged from 11 to more than 20 per cent of the total rainfall and fell within the normal range of interception figures observed in natural tropical forests. Drop size spectra were established using the filter paper method; the drop size distributions of the open field rainfall were unimodal while the throughfall had bimodal distributions, with a higher percentage of the volume of rain falling as large drops. Disturbance of the natural forests, for example by logging activities or cattle grazing, will further increase the throughfall kinetic energy and may lead to higher splash erosion rates inside the forests than in the open field. The kinetic energy of the throughfall was higher than that of the open field rainfall (20-70 per cent), even after correcting for interception losses (4-30 per cent). Splash-cup experiments, conducted both in the field and in the laboratory, indicated that the kinetic energy is a good index of rainfall erosivity. Inside the forests the amounts of sand splashed from the splash-cups was, after correction for interception losses, 2-16 per cent higher than outside the forests.  相似文献   

6.
ABSTRACT

Optical disdrometers can be used to estimate rainfall erosivity; however, the relative accuracy of different disdrometers is unclear. This study compared three types of optical laser-based disdrometers to quantify differences in measured rainfall characteristics and to develop correction factors for kinetic energy (KE). Two identical PWS100 (Campbell Scientific), one Laser Precipitation Monitor (Thies Clima) and a first-generation Parsivel (OTT) were collocated with a weighing rain gauge (OTT Pluvio2) at a site in Austria. All disdrometers underestimated total rainfall compared to the rain gauge with relative biases from 2% to 29%. Differences in drop size distribution and velocity resulted in different KE estimates. By applying a linear regression to the KE–intensity relationship of each disdrometer, a correction factor for KE between the disdrometers was developed. This factor ranged from 1.15 to 1.36 and allowed comparison of KE between different disdrometer types despite differences in measured drop size and velocity.  相似文献   

7.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This study evaluated the spatial distribution of the throughfall kinetic energy (TKE) on a small scale in a rubber plantation. The experiments used Tübingen splash cups with natural rainfall. The results indicate that the leaf area index did not significantly affect the TKE during the foliated season. There was no significant correlation between the TKE and the distance from the trunk. However, the lateral translocation of the throughfall in the canopy significantly affected the spatial distribution of the TKE, and high TKE points appeared in the middle and at the edge of the canopy. The results also show that the spatial distribution of the volume-specific TKE values was similar in different rainfall and rainfall intensity groups. The variogram of the spatial variability demonstrates that the TKE exhibited a strong spatial autocorrelation. We confirm that the rainfall redistribution is important for the spatial distribution of the TKE in a rubber plantation.  相似文献   

9.
Abstract

Knowledge of the relationship between rainfall intensity and kinetic energy and its variations in time and space is important for the prediction of erosion hazard. Kinetic energy and erosivity are also strongly controlled by raindrop size. However, studies on raindrop measurement and different practical techniques have been rarely documented. The current study therefore aimed to apply existing raindrop-size measurement techniques—the photographic, flour-pellet and stain methods, as well as an innovative flour-stain method—and to evaluate their applicability at several intensities in Mazandaran Province, Iran. The distribution of raindrop size obtained by the different methods was recorded and compared with those obtained through applying a high-speed imaging technique. All the analyses were made with the help of a SPSS software package. The results showed that the raindrop diameters ranged from 0.2 to 5.16 mm at different rainfall intensities. Statistical comparison of the methods using the Duncan test showed that the flour-pellet method presented similar results to the photographic technique; it was concluded that this can be used as a practical and inexpensive method to estimate a wide range of raindrop sizes.

Editor Z.W. Kundzewicz

Citation Sadeghi, S.H., Abdollahi, Z., and Khaledi Darvishan, A., 2013. Experimental comparison of some techniques for estimating natural raindrop size distribution on the south coast of the Caspian Sea, Iran. Hydrological Sciences Journal, 58 (6), 1374–1382.  相似文献   

10.
Most of the lowland in the central rift valley of Ethiopia is arid or semiarid and in degradation,with frequent occurrence of droughts.Soil erosion by water during the rainy season is a serious problem...  相似文献   

11.
An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture.  相似文献   

12.
Effects of convective and mechanical turbulence at the entrainment zone are studied through the use of systematic Large-Eddy Simulation (LES) experiments. Five LES experiments with different shear characteristics in the quasi-steady barotropic boundary layer were conducted by increasing the value of the constant geostrophic wind by 5 m s-1 until the geostrophic wind was equal to 20 m s-1. The main result of this sensitivity analysis is that the convective boundary layer deepens with increasing wind speed due to the enhancement of the entrainment heat flux by the presence of shear. Regarding the evolution of the turbulence kinetic energy (TKE) budget for the studied cases, the following conclusions are drawn: (i) dissipation increases with shear, (ii) the transport and pressure terms decrease with increasing shear and can become a destruction term at the entrainment zone, and (iii) the time tendency of TKE remains small in all analyzed cases. Convective and local scaling arguments are applied to parameterize the TKE budget terms. Depending on the physical properties of each TKE budget contribution, two types of scaling parameters have been identified. For the processes influenced by mixed-layer properties, boundary layer depth and convective velocity have been used as scaling variables. On the contrary, if the physical processes are restricted to the entrainment zone, the inversion layer depth, the modulus of the horizontal velocity jump and the momentum fluxes at the inversion appear to be the natural choices for scaling these processes. A good fit of the TKE budget terms is obtained with the scaling, especially for shear contribution.  相似文献   

13.
A low-cost, simple to use portable rainfall simulator is developed for use over a 5 m^2 plot. The simulator is easy to transport and assemble in the field, thereby allowing for necessary experimental replicates to be done. It provides rainfall intensities of between 20 and 100 mm/h by changing the number and type of silicon nozzles used. The Christiansen coefficient of uniformities obtained in the field are appropriate and vary from 79 to 94% for rainfall intensities ranging from 30 to 70 mm/h. In addition, the median volumetric drop diameters measured for rainfall intensities of 30, 50, and 70 mm/h are in the lower range of that of natural rainfall and equal to 1.10 ± 0.08,1.69 ± 0.21, and 1.66 ± 0.20 mm, respectively. The velocities of the raindrops with diameters less than 1.2 mm reached terminal velocities, while raindrops less than 2.0 mm achieved velocities reasonably close to the terminal velocity of natural rainfall. Furthermore,the average time-specific kinetic energy(KET) for rainfall intensities of 30, 50, and 70 mm/h are 257.7,760.1, and 1645.2 J/m^2/h, respectively accounting for about 78.0 and 86.5% of the KET of natural rainfall for50 and 70 mm/h rainfall intensity, respectively. The applicability of the portable rainfall simulator for herbicide transport study is investigated using two herbicides(atrazine and metolachlor); herbicide losses in runoff and sediment samples are in the ranges reported in the literature. As a percentage of the amount of herbicide applied, 5.29% of atrazine and 2.15% of metolachlor are lost due to combined water and sediment runoff. The results show that the portable rainfall simulator can be effectively used in studying processes such as pesticide runoff, infiltration mechanisms, and sediment generation and transport at a field plot scale with an emphasis on how surface characteristics such as slope and soil properties affect these processes.  相似文献   

14.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

15.
The balance conditions of relative angular momentum and time-mean kinetic energy and their annual variations are studied for the Northern Hemisphere tropical belt. The belt is divided into two roughly equal size parts, the monsoon and the extramonsoon regions. The data used consist of all available daily rawinsonde reports from the world areological network for the two 5-year periods 1958–63 and 1968–73.In winter, the trade winds in the monsoon and extramonsoon regions are both sources of westerly relative angular momentum for the middle latitude circulation. However, it is found that the angular momentum gained in the extramonsoon region of the Tropics is mostly destroyed by a net southward flow of mass in that region, and becomes regenerated in the monsoon region by a net northward flow of mass there. This excess of angular momentum together with the angular momentum picked up locally in the monsoon region is almost all exported across its northern boundary. It is further found that in winter the Tropics are also an important source of mean kinetic energy for middle latitudes. Again almost all export of kinetic energy was found to take place across the northern boundary of the monsoon sector. Most of this energy must be generated through the pressure gradient term inside the monsoon region itself, the transformation from transient eddy kinetic energy being very small. The proper evaluation of the pressure gradient appears to be the main stumbling block in the present study, preventing us from estimating the generation and thereby, as a residual, the frictional dissipation in the two regions.In summer, the extramonsoon region remains a source of angular momentum, but the monsoon region with its surface westerlies acts as a sink, leading to a sharp reduction (and even a midsummer reversal) of the export into middle latitudes. Also the export of mean kinetic energy almost vanishes in summer, except for a small southward transfer across the equator. The calculations for two 5-year periods give very similar estimates and thereby show the reliability of the results.Parts of this paper were presented at the International Symposium on Monsoons, March 7–12, 1977 in New Delhi, India.  相似文献   

16.
根据高分辨率的岱海沉积物粒度分布的中值粒径和粗颗粒含量,结合区域降水、历史记载资料,重建了内蒙古岱海地区近400年来发生的尘暴事件。结果表明,尘暴事件是受冬、夏季风的相对强弱制约的,大量尘暴事件频发于小冰期干冷的气候条件下,表现为中值粒径大,粗颗粒含量高,在转暖的现代气候下,尘暴事件很少,中值粒径也随之降低,但是近十几年尘暴事件又呈上升趋势,部分可能与人类活动造成的土地荒漠化有关。  相似文献   

17.
An inexpensive, mobile field rainfall simulator and runoff plot frame were developed for use on hillside vineyards. The simulator framework and components were lightweight, readily available and easily manageable such that they can be handled by one person during transport, set–up and operation. The vineyard rainfall simulator was simpler than many of the machines in recent use for similar studies, yet offered equal or improved performance for small‐plot studies. The system developed consistent sized 2·58 mm raindrops at intensities ranging from 20 to 90 mm/h. The average distribution uniformity coefficient at an intensity of 60 mm/h was 91·7%, with a deviation of only 2·2%. This coefficient was similar to the range reported for a more complex rotating disk simulator, and was notably greater than that obtained for other similar devices. The system water capacity of 40 l allowed for 1‐h storm durations at 60 mm/h, usually sufficient time for commencement of erosion and runoff. The runoff plot frame was designed to be quickly installed, and to discourage sediment deposition in the routing of runoff to collect containers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Rain and throughfall drops were sampled during rain events in a New Zealand beech forest and the frequency distributions of drop mass and kinetic energy calculated. The kinetic energy of throughfall under the canopy was always greater than that of rainfall in the open, notwithstanding interception losses. During a typical rain event in which 51 mm fell in 36 h, the total kinetic energy of throughfail was 1.5 times greater than that of rainfall, and the mean amount of sand splashed from sample cups was 3.1 times greater under the canopy than in the open. It appears that where mineral soil is exposed at the surface, by animal trampling or burrowing for example, rates of soil detachment by splash under a forest canopy will probably exceed those in the open.  相似文献   

19.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Major and minor elements have been determined on 26 samples of andesitie to rhyolitic lavas from Nevado Coropuna and Andagua valley in Southern Peru. Nevado Coropuna dating back since late Miocene is the highest stratovolcano of Peru. It is located at 150 km NW of Arequipa and at 110 km E of the Pacific coast. Andagua valley is situated at about 30 km E of Coropuna. The magmatic activity there, as shown by the presence of several cones, is more recent than that of Corpouna and is related to the tectonic graben characterizing this valley. The geological position of the valley is very important because it is near the transverse line separating the zone of rather flat subduction of the Nazca plate from another one dipping more steeply to the SE. The lavas from Andagua show higher Ti, P, Sr and alkali contents than those from Coropuna, and several display some alkaline tendency with Na affinity. No shoshonitic rocks have been found in the area. According to their geochemistry, Corpuna and Andagua andesites do not seem to have been originated by a single process. In particular, the distribution of Ni, Cr, Ti, Zr, Y, P, Nb, and Sr would exclude either adirect origin from pyrolitic materials, or aprogressive crustal contamination as the most important factors for their origin. Calculations of mineral/melt equilibria for Coropana andesites suggests crystallization processes at depth less than 35 km and H2O-understurated conditons at the time of the phenocrysts precipitation, indicating a possible high undersaturation at depth of the source zone. As lar as the rhyolites are concerned, their geochemical characteristics do not preclude a crustal origin. A statistical study of the chemical zonation of the Plio-Quaternary lavas of southern Peru has shown an increase of Ti and P contents eastward of the Chile-Peru trench.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号