首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Micropillars were fabricated on multiple quantum-well structure of PbSe/PbSrSe grown on top of BaF2 substrate in molecular beam epitaxy (MBE). The photoluminescence spectra from the pillar structure, having a diameter of 5 μm and inter-pillar distance of 8 μm, was studied at various temperature starting from 77 to 300 K. There had been an approximately consistent red-shift of photoluminescence peak of 3.62 cm−1 for unit K change in ambient temperature. The prominent and repeatable emission from the micropillars at various temperatures signified high crystalline nature of the fabricated micro-objects. This type of micropillar structure is one of the magnificent contenders of future opto-electronic micro-features.  相似文献   

2.
The DC performance of AlGaN/GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy was investigated for gate lengths in the range 0.1–1.2 μm. On 0.25 μm gate length devices we obtained 40 VDS operation with >50 mA peak ID. The peak drain current density was 0.44 A/mm for 100 μm gate width devices with 1.2 μm gate lengths. The extrinsic transconductance (gm) decreased with both gate length and gate width and was 75 mS/mm for all gate widths for 0.25 μm devices. E-beam written gates typically produced a slightly lower Schottky barrier height than optically patterned gates.  相似文献   

3.
The use of optoelectronic integrated circuits (OEICs) is now emerging as a practical technology for a variety of applications, particularly in advanced telecommunications. OEICs consist of a range of devices such as lasers, waveguides, modulators, amplifiers, transistors, detectors, etc. fabricated on the same substrate. When a semi-insulating substrate is used, these devices can be electrically isolated by channel etching, resulting in a low capacitance structure with reduced electrical interference between the subcomponents. One of the devices which is particularly advantageous for this type of integration scheme is the distributed feedback (DFB) laser. The laser can be made to function more efficiently by minimizing the current flowing outside the active region. This can be achieved by surrounding the active region with semi-insulating iron doped InP. This work describes for the first time, the MOVPE growth, fabrication, and device characterization of 1.3 um buried heterostructure DFB MQW lasers, which combine the advantages of using both a semi-insulating substrate and a semi-insulating infill region in the same device structure. The potential advantage of this design scheme is improved OEIC performance as a result of, reduced capacitance and electrical crosstalk, enhanced laser output power, higher speed, increased efficiency, wider operating temperature and reduced threshold current. The laser active region consists of 8 x 140 Å quantum wells of GalnAsP (λ = 1.3 μm) and 110 Åbarriers of GalnAsP (λ= 1.07 μm). Single mode 1.3 urn devices of length 250 μm operating at room temperature produced threshold currents of 8 mA, efficiencies of up to 25%, output powers of 18 mW at 80 mA (pulsed), and a frequency response greater than 12GHz. The parasitic capacitance was estimated to be less than 3 pF.  相似文献   

4.
Sharp erbium-related intra-4f shell luminescence from Er doped GaAs and Al0.4Ga0.6 As epitaxial layers grown by molecular beam epitaxy (MBE) is presented. The emission arising from the two Er3+ excited states,4I13/2 and4I11/2 are studied. We have observed, by means of heat treatment under differentambients such as As, Ga and Al over pressure, that the optically active Er3+ preferentially occupies a Column III lattice site or Column III related defects. The photoluminescence results of co-doping Al0.4Ga0.6As:Er with Si and Be by MBE is also reported for the first time. A strong single 1.54 μm spontaneous emission line is achieved by co-doping with Be (≈1×1018 cm−3). This improvement is a result of successfully eliminating or suppressing the other transitions without sacrificing the 1.54 μm emission intensity or linewidth.  相似文献   

5.
AlxGa1−xN/GaN/AlN heterostructures on silicon (Si) substrate was developed by nitrogen plasma-assisted molecular beam epitaxy (MBE) and their properties were investigated by scanning electron microscopy (SEM), electron dispersive X-ray (EDX), atomic force microscopy (AFM), high resolution X-ray diffraction (XRD), Raman spectroscopy and Hall effect measurements. High purity gallium (7N) and aluminum (6N5) were used in the Knudsen cells. High purity nitrogen with 7N purity was supplied to radio frequency (RF) source to generate reactive nitrogen species. The nitrogen pressure and a discharge power were kept at 1.5×10−5 Torr and 300 W, respectively. From SEM measurements, the surface morphology of samples presented 2- and 3-dimensional growth modes. The EDX measurements showed that there were no foreign elements in the grown samples. The HR-XRD measurement has confirmed that the AlxGa1−xN/GaN/AlN heterostructures samples were epitaxially grown on Si substrate. All the dominant E2 phonon modes were found in Raman spectra results. Lastly, AlxGa1−xN/GaN/AlN heterostructures based metal–semiconductor–metal (MSM) UV photodetectors were fabricated and the electrical characteristics of the devices were investigated by using current–voltage (I–V) and photo-conductivity measurements. The devices presented good I–V and photoconductivity characteristics.  相似文献   

6.
A new MBE growth method for the fabrication of a high-quality double hetero-epitaxial Si/γ-Al2O3/Si structure was recently developed. In the present work, characteristics of NMOSFETs fabricated on the Si/γ-Al2O3/Si structure were investigated, and compared with those on a Si/MgAl2O4/Si structure. A γ-Al2O3 layer was created from a MgAl2O4 layer by reaction with Si beams as follows: MgAl2O4 + Si → γ-Al2O3 + SiO ↑ + Mg ↑. The MBE growth of Si on the effectively restructured γ-Al2O3 layer was then performed at a substrate temperature of 700° C, 150° C lower than for the MBE growth of Si on a MgAl2O4/Si substrate. The electron field effect mobility and leakage current between source and drain for the NMOSFETs fabricated on Si/γ-Al2O3/Si structures were 660 cm2/V · s and 2.8 pA/μm respectively, and exhibited a higher level of performance than those on a Si/MgAl2O4/Si structure. In the Si/MgAl2O4/Si, SIMS measurements confirmed that autodoped Al and Mg atoms near the interface between the Si epi-layer and MgAl2O4/Si substrate diffused anomalously and accumulated at the surface during device fabrication processes. These autodoped Al and Mg atoms acted as ionized impurities during test operation. Suppression of autodoping from insulator layers during the MBE growth of Si was thus deemed essential to the improvement of NMOSFET characteristics. In the Si/γ-Al2O3/Si structure, autodoped atoms were scarcely detectable. It was therefore concluded that the Si/γ-Al2O3/Si structure under study was very promising for SOI device applications.  相似文献   

7.
GaInNAs has received a great deal of attention among the scientific community, owing to its ability to be grown pseudomorphically on GaAs substrates and, thus, to extend the possibility of using GaAs based materials for technologically important wavelengths such as 1.3 μm. Annealing was found to be a very useful tool in improving the optical characteristics of as-grown GaInNAs films. This work presents a systematic statistical analysis of two annealing parameters, time and temperature, for Ga0.8In0.2N0.01As0.99 quantum wells. Annealing, in general, has resulted in decreasing the emission wavelength by at most 0.08 μm, narrowing the peaks by at most ∼25 meV and increasing the intensity by at most 90 times. However, from the statistical analysis, it is observed that the temperature is the dominant factor among time and temperature in recovering the optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号