首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
对R32在水平光滑管和微肋管(外径均为7mm)内的沸腾换热特性展开试验研究,测试的制冷剂质量流速为100~250 kg/(m~2·s),饱和蒸发温度为7~11℃,热流密度为3~8 kW/m~2,测试管内制冷工质平均干度值为0~0.7。试验结果表明:热流密度是影响R32沸腾换热系数的主导因素之一,质量流速的增大、饱和蒸发温度的升高、热流密度的增大均有利于提高R32的沸腾换热系数;微肋管有强化传热的效果,其平均沸腾换热系数比光管增大11.8%~33.2%;干度对R32沸腾换热系数的影响比较复杂,R32的沸腾换热系数随干度的增加先增大后减小,这是由于出现了干涸值,本文试验测得的干涸值范围为0.41~0.57,制冷剂质量流速的降低和热流密度的增大均有利于干涸值的增大。  相似文献   

2.
超临界二氧化碳在套管内换热的实验研究   总被引:1,自引:0,他引:1  
候晓飞  诸凯  付萌  吕静 《制冷学报》2008,29(1):13-16
对超临界CO2在套管内的换热特性进行了实验研究,探讨了超临界CO2换热过程中,质量流率、压力和入口温度的变化对换热性能特性和压降的影响。实验得出,换热系数随着质量流率的增加而增加;而换热系数随压力的增加而减少;入口温度的变化对换热系数基本没有影响;压降随着入口温度的升高而逐渐增大;并给出了Re和Nu数的变化规律。研究为超临界二氧化碳换热器的设计提供了依据。  相似文献   

3.
在内径为2 mm的水平不锈钢微通道内对R410A的沸腾换热特性进行了实验研究。质量流率为200~600 kg/(m2·s),热流密度的范围为5~15 k W/m2,干度的范围为0.1~0.8,饱和温度为0℃和5℃。结果显示,当干度大于0.5时,随着热流密度的上升,沸腾换热系数显著上升,其平均增幅分别达到了4.6%和7.7%。当干度小于0.5时,热流密度对换热系数的影响十分微弱。随着质量流率的上升,换热系数均出现了小幅上升,其平均增幅也分别达到了1.1%和2%。而饱和温度对换热系数则几乎没有影响。随后,对可能的机理进行了讨论。实验结果又与Choi K I等以及Ebisu T等在内径分别为1.5 mm,3 mm和6.4mm管道内的研究结果进行了比较。结果显示,在相似工况下,随着管径的下降,当干度小于0.5时,换热系数呈现出上升的趋势,其平均增幅分别达到了18.4%,23.6%和19.5%。  相似文献   

4.
为研究流体物性、流动和换热过程的状态参量对微通道内沸腾换热特性的影响规律,本文采用去离子水和无水乙醇在当量直径为0.293 mm的矩形微通道进行了不同质量流量和热流密度条件下的沸腾换热实验研究,通过对实验数据的计算和处理,分析总结了流体的热物性、质量流量、热流密度、干度和Bo数等参量对沸腾换热系数的影响规律。结果表明:沸腾换热系数随着热流密度、干度和Bo数的增大而降低,核态沸腾占主导地位;相同的质量流量和热流密度条件下,去离子水的沸腾换热系数明显高于无水乙醇的沸腾换热系数,并且前者的换热系数随质量流量的增大而增大,而后者变化不明显。根据考虑了通道尺寸效应及流体物性参量总结出的换热系数关联式进行了计算,计算结果对去离子水和无水乙醇的平均绝对误差分别为14.2%和16.6%,可认为该关联式适用于微通道内沸腾换热系数的预测。  相似文献   

5.
设计了一个可控制制冷剂流量、压力和温度等实验工况的微通道换热器相变流动与换热的可视化实验平台,对R134a制冷剂流经微通道换热器进行了冷凝换热实验研究.试验测量了小质量流率下的R134a制冷剂在多个饱和状态工况下的冷凝换热性能,涉及质量流量、进出口压力和温度等参数.实验分析了传热系数与雷诺数的关系,与Koyama的关联式预测比较接近.分析了摩擦系数随雷诺数的变化,与H L MO和Wu&Little方程计算得到的数值相近.  相似文献   

6.
为了探究微通道内流动沸腾及传热现象的机理,以制冷剂R22为工质在矩形微通道内进行了流动沸腾及可视化实验。结果表明,在核态沸腾下传热系数受质量流率的影响较小,却随着热流密度的增加而快速增加;微通道的尺寸越小,传热效果越好,水力直径为0.92 mm和1.33 mm微通道内的传热系数比2 mm微通道内的传热系数分别提高约25%、12%;根据实验值与预测值的对比情况,在Oh H K等[15]和Yun R等[7]模型基础上拟合得到新的传热系数预测关联式,平均绝对误差降至8.8%;通过可视化实验发现,在临界热流密度下微通道内出现波浪式气体层的现象。  相似文献   

7.
R410A在内螺纹管内无润滑油沸腾换热实验研究   总被引:5,自引:1,他引:4  
为了建立无润滑油的实验台,采用液压隔膜泵为动力循环,以R410A和R22为工质在水平内螺纹铜管(φ5mm和φ9.52mm)中进行了沸腾换热实验研究,并对二者沸腾换热性能做了对比.分析讨论了制冷剂质量流速、管外水流量变化、强化管的管径对压降和换热系数影响.结果表明:换热系数随着流量的增大而增大,管径的大小对换热系数的影响较大,在相同的流量下,9.52mm管径的换热系数是5mm的1.32~7.22倍,5mm管径的压降是9.52mm管径的1.48~2.68倍.  相似文献   

8.
严嘉  童明伟  杨鹏 《制冷学报》2005,26(1):5-10
实验测试了HC290-Suniso 3GS混合工质在含油浓度为0.43%~5.28%、质量流率为40kg/m2*s~220kg/m2*s,蒸发温度分别为-5℃、0℃、 5℃时在水平微肋管内的沸腾换热特性及压降.蒸发试验段为一套管蒸发器,有效长度为2.0m,内管为内肋强化管,其外径为12.7mm,最大内径为11.44mm,T型肋高0.25mm,螺旋角20°,肋数为60;外套管是一光滑铜管,其内径为19mm.实验结果表明含油工质沸腾平均换热系数随工质质量流率、干度的增大而增加,随含油率的增大而降低,蒸发温度对其影响不大;压降随其质量流率的增大而增大,与光管相比其压降随质量流率的增大要更快,润滑油的加入对压降影响不大.通过测试沸腾换热特性所得的40多个实验数据点,回归出了适用于本实验条件的经验关联式.  相似文献   

9.
印刷电路板换热器(Printed Circuit Heat Exchanger,PCHE)是一种新型微通道换热器,其换热的高效性和集成性非常适合用于LNG接收站的中间流体换热器(IFV)中。对超临界甲烷在PCHE中的对流换热进行数值模拟,研究了质量流量、入口压力、热通量及通道形状对微通道内甲烷换热系数的影响。结果表明,表面换热系数随温度的变化先增大再减小,并在假临界温度处达到最大值;PCHE半圆形通道内的换热特性高于普通圆形通道;其换热系数随流速的增加而增加;随热流密度的增加而增加;压力对换热特性的影响与介质所处的温度区间有关。  相似文献   

10.
针对CO2作为制冷剂在微细通道内流动沸腾换热进行了实验与理论研究,采用红外成像观测与换热系数实验研究定量与定性的分析了热流密度:2~35 kW/m2,饱和温度:﹣10 ℃ ~15 ℃工况时,内径为1 mm、2 mm圆管内的换热系数。实验结果表明:热流密度的增加强化了微细通道内工质核态沸腾换热,使换热系数得到显著提高;换热系数随饱和温度非单调变化,饱和温度较高时,越接近CO2临界温度其换热系数随饱和温度升高而增加,当饱和温度在低温工况时换热系数则随其降低而增加,换热过程中发生干涸干度随饱和温度升高而单调降低。  相似文献   

11.
对R32在?5 mm的水平光管内的流动沸腾换热与压降特性进行试验研究和理论分析。试验的蒸发温度为5℃,质量流量范围为100~500 kg/(m2·s),热流密度为8~24 kW/m2。结果表明,沸腾换热系数在1~8 kW/(m2·K)之间,压降在1~4 kPa/m之间。沸腾换热系数随着干度增大而增大,质量流量的增大和热流密度的增大都有利于换热系数的增加。质量流量的变化对压降的影响比较明显。与R32在?7 mm管内流动传热性能相比,换热系数提高了30%左右。将得到的沸腾换热系数和压降试验数据与多个模型的预测结果进行比较,发现多数换热经验关联式的预测误差较大,仅有Fuji-Nagata关联式的预测值与试验值较为接近;压降的预测误差相对较小。  相似文献   

12.
搭建微通道蒸发器性能实验台,采用控制变量法研究不同空气侧风速下微通道蒸发器表面温度分布、制冷剂进出口压力的变化规律,计算换热量和换热系数,从而分析空气侧风速对微通道蒸发器的流量分配特性和换热效果的影响。结果表明,随着风速增大,微通道蒸发器制冷剂流量分配不均匀性增大,进出口压力波动振幅和周期增加,压降增大,风速2 m/s时微通道蒸发器换热效果最佳。  相似文献   

13.
微尺度高效换热器具有结构紧凑、热阻小、换热系数大等特点。以A/B混合制冷剂为工质,对其密度、饱和蒸气压、表面张力和黏度进行了计算并拟合出标准差在1%内的相应的物性温度曲线,并对其在-45、20、60℃入口温度下在1.1/1.2 mm尺寸的矩形微通道内的换热特性进行了实验研究,在给定400 W外热流下,不同入口温度有效换热热流密度都在50 000 W/m~2左右,入口温度越高,平均换热系数越大。  相似文献   

14.
建立电冰箱换热器试验台,对具有百叶窗翅片的微通道冷凝器制冷剂侧的传热和压降进行测试。结果表明:随着制冷剂质量流速的增加,冷凝器换热量、换热系数及制冷剂流动压降均增大,在冷凝压力为1.46MPa,制冷剂质量流速从90 kg/(m~2·s)增加到150 kg/(m~2·s)时,换热量、换热系数和压降分别增加63%,116%和166%;随着冷凝压力的升高,换热量增大,换热系数减小,在制冷剂质量流速为150 kg/(m~2·s)时,冷凝压力为1.46 MPa与冷凝压力为1.16 MPa相比,换热量增加12%,换热系数降低39%。  相似文献   

15.
垂直矩形窄通道换热特性实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以去离子水为工质进行实验,研究垂直矩形窄通道换热特性。采用单侧壁面加热,改变工质流动参数,分析沿流动方向的壁面温度分布特性和测温点处的局部换热系数。实验表明:以对流沸腾为主的阶段,换热系数随着质量流速的增加而增加,入口温度对于换热系数基本没有影响;当干度χ0.1时,换热系数随着干度的增加而降低,当干度χ0.1时,换热系数随着干度的增加而基本保持不变。以核态沸腾为主的阶段,换热系数随干度的增加而略微上升,随入口温度的升高而增加。  相似文献   

16.
氨制冷剂存在可燃性和毒性,因此减少其在制冷系统中的充注量极为重要。小管径换热管通常可以提供更高的表面传热系数,这可以作为提升换热器紧凑性同时减少系统中充注量的有效方法。本文搭建了氨制冷剂管内流动沸腾换热及压降测试实验装置,测试了氨制冷剂在4 mm水平光管内的流动沸腾换热及压降,并分析了干度、质量流速及热流密度对换热及压降特性的影响。结果表明:流动沸腾换热表面传热系数随着干度的增加而增大,同时质量流速和热流密度越高,流动沸腾换热表面传热系数越大。此外,氨制冷剂在管内的两相摩擦压降也随着干度的增加而增大,在固定干度下,质量流速的升高导致压降增大。  相似文献   

17.
建立单面加热垂直矩形窄通道流动沸腾换热实验装置,针对截面250 mm×3.5 mm的窄缝通道,对水流动沸腾换热特性进行实验研究。通过实验分析可知:(1)饱和沸腾起始点是核态沸腾的开始,以此为分界,窄通道内的换热特性截然不同。影响沸腾起始点的因素主要有3种:热流密度、质量流量及入口温度。(2)流体从单相流、过冷沸腾和饱和沸腾转变,其壁面温度变化也各不相同。流体处于单相流时,壁面温度沿流动方向呈线性增加;流体处于过冷沸腾阶段时,过冷沸腾对壁面温度的影响不大,壁面温差很小,可近似认为此阶段为等壁温换热过程。流体进入饱和沸腾(饱和核态沸腾和流动沸腾),壁温存在最大值。  相似文献   

18.
何宽  柳建华  余肖霄 《制冷学报》2019,40(5):118-123
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。  相似文献   

19.
实验研究了填充泡沫金属的圆管内制冷剂与润滑油混合物流动沸腾换热特性。实验对象为两根分别填充5PPI、90%孔隙率与10PPI、90%孔隙率泡沫铜的圆管,以及相同管径的光管。实验工况为蒸发压力995kPa,质流密度为10~30 kg/(m2.s),热流密度为3.1~9.3kW/m2,入口干度0.175~0.775,油浓度为0~5%。实验结果表明:纯制冷剂工况下,泡沫金属的存在强化流动沸腾换热,换热系数最多提高185%;含油工况下,泡沫金属强化换热的效果弱化;相同工况下,更小的孔径可以提高流动沸腾换热系数,相比5PPI泡沫金属的实验数据,10PPI的泡沫金属可以使换热系数最多提高0.6倍。基于流型建立了填充泡沫金属的圆管内制冷剂与润滑油流动沸腾换热系数的预测模型,预测模型与98%的实验数据误差在±30%以内。  相似文献   

20.
应用FLUENT软件对制冷剂R134a在光管和横纹槽管水平管外沸腾传热进行三维数值模拟,得到其饱和泡状沸腾过程中体积含气率的分布规律,并比较它们的换热系数。结果表明横纹槽管外侧能够很好地强化沸腾传热。此外,还通过改变边界条件分析质量流量、热流密度的变化对横纹槽管管外沸腾换热系数的影响。最后应用场协同理论,从局部换热角度分析其强化机制。研究表明,横纹槽管水平管外沸腾换热得到强化的原因是其凹槽前后的速度场与温度梯度场之间夹角较小,协同程度更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号