首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

2.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

3.
The preparation, spectroscopic characterization and magnetic study of N,N′-bis(substituted-phenyl)oxamidate-bridged nickel(II) dinuclear complexes of formula {[Ni(N3-mc)]2(μ-CONC6H4-X)}(PF6)2 (N3-mc = 2,4,4-trimethyl-1,5,9-triazacyclo-dodec-1-ene (Me3-N3-mc) or 2,4,4,9-tetramethyl-1,5,9-triazacyclododec-1-ene (Me4-N3-mc), X = 2-Cl, 4-Cl, 2-OCH3, 4-OCH3) are reported. These paramagnetic nickel(II) complexes have been characterized by both one- and two-dimensional (COSY) 1H NMR techniques. The COSY spectrum of 5 has allowed to achieve the assignment of the phenyl protons of the N,N′-diphenyloxamidate. The crystal structures of [Ni(Me3-N3-mc)(μ-CONC6H4-4-Cl)]2(PF6)2 (6), [Ni(Me3-N3-mc)(μ-CONC6H4-4-OMe)]2(PF6)2 (8) and [Ni(Me4-N3-mc)(μ-CONC6H4-2-Cl)]2(PF6)2 (9) have been determined and their magnetic properties have been studied. The value of magnetic coupling between the two nickel(II) ions across the oxamidate bridge [J = − 37.6 (6), −39.9 (8) and −39.7 cm−1 (9)] is sensitive to the distortion of the coordination sphere of the metal ions and the topology of the molecular bridge.  相似文献   

4.
The reaction of trialkylgallium or indium R3M (M=In, Ga; R=Me, Et) with N,N′-ethylenebis(salicylideneimine) or 1,2-N,N′-phenylenebis(salicylideneimine) yields seven intramolecularly coordinated organogallium or organoindium complexes. Two hydroxyl protons in the ligands react with both trialkylindium and trimethylgallium, while one hydroxyl group reacts exclusively with triethylgallium. The complexes obtained have been fully characterised by elemental analysis, 1H-NMR, IR and mass spectroscopy. The structure of methyl-N,N′-bis(salicylidene)-1,2-phenylenediaminoindium (1) has been determined by single-crystal X-ray analysis. The In atom is five coordinate in the structure. Fluorescence spectroscopy has shown that the maximum emission wavelength of 1 is 499 nm upon radiation by UV light.  相似文献   

5.
A Schiff base complex N,N′-bis(2-hydroxy-1-naphthylmethylidene)-1-methyl-1,2- diaminoethane-N,N′,O,O′-nickel(II) has been synthesized. The title compound has been characterized by FT-IR and UV–vis spectroscopies. The UV–vis experiments indicate that the compound has solvatochromism in the UV region, implying non-zero molecular first hyperpolarizability. To investigate microscopic second-order nonlinear optical (NLO) behavior of the examined complex, the electric dipole moments (μ) and the first static hyperpolarizabilities (β) were computed using Finite Field second-order Møller Plesset (FF MP2) perturbation procedure. According to ab initio quantum mechanical calculations, the title complex exhibits non-zero β values, revealing microscopic second-order NLO behavior.  相似文献   

6.
A series of complexes of the type M(Phca2en)X2, where Phca2en=N,N′-bis(β-phenyl-cinnamaldehyde)-1,2-diiminoethane, M(II)=Co, Ni or Zn and X=Cl, Br, I or NCS have been synthesized and characterized. The crystal and molecular structures of Co(Phca2en)Cl2 (2), Ni(Phca2en)Br2 (5) and Zn(Phca2en)Cl2 (6) were determined by X-ray crystallography from single-crystal data. Complexes 2 and 5 are isomorph and isostructure, in which the coordination polyhedron about the central metal ion is distorted tetrahedron with Cl---Co---Cl, 110.17(6)°; N---Co---N, 84.16(13)° and Cl---Zn---Cl, 112.02(6)°; N---Zn---N, 83.45(16)°. The complex 5 crystallizes in triclinic system with two molecules per asymmetric unit, both having nickel ion in distorted tetrahedral geometry, Br---Ni---Br, 122.645(18)° and 125.729(18)°; N---Ni---N, 84.63(9)° and 85.08(9)°. These structures consist of intermolecular hydrogen bonds of the type C---HX. The formation of the C---HM weak intramolecular hydrogen bonds due to the trapping of C---H bonds in the vicinity of the metal atoms are reported for 2, 5 and 6. A 1H NMR study of Zn complexes gives further evidence for the presence of such interactions and their significance. The spectral properties of the above complexes are also discussed.  相似文献   

7.
The synthesis of a new series of six-membered N,N′-diarylsubstituted methylene-bis-dihydro-2H-1,3-benzoxazines (5a-e) was achieved in excellent yields by Mannich-type condensation of N,N′-diarylsubstituted methylene-bis-o-hydroxybenzyl amines (4a- e) with formaldehyde in chloroform at reflux. These amines (4a-e) were obtained by the reduction of N, Nr-diarylsubstituted methylene-bis-o-hydroxybenzyl imines (3a-e) with NaBH4, which inturn were obtained by the condensation of methylene-bissalicylaldehyde (2) with various substituted arylamines.  相似文献   

8.
Two macrocyclic ligands, N,N′-propylene-diylbis[3-(1-aminoethyl)-6-methyl-2H-pyran-2,4(3H)-dione] I and N,N′-phenylene-diylbis[3-(1-aminoethyl)-6-methyl-2H-pyran-2,4(3H)-dione] II, have been prepared by the condensation of dehydroacetic acid (3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one) with 1,2-phenylenediamine and 1,3-propylenediamine. They have been characterized by means of elemental analysis, IR spectroscopy as well as by X-ray crystallography. The molecular structures of the compounds I and II can be described as consisting of two β-enaminone-2-pyrone rings interlaced with either alkyl chain in I or phenyl ring in II. The X-ray studies confirmed the existence of strong N–HO intramolecular hydrogen bonds in both structures. Their lengths are in accordance to lengths of RAHB intramolecular hydrogen bonds in 1,3-diketones, aryl-hydrazones, β-enaminones and related heterodienes (2.5–2.6 Å) [P. Gilli, V. Bertolasi, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 122 (2000) 10405].  相似文献   

9.
The novel triethylantimony(v) o-amidophenolato (AP-R)SbEt3 (R = i-Pr, 1; R = Me, 2) and catecholato (3,6-DBCat)SbEt3 (3) complexes have been synthesized and characterized by IR, NMR spectroscopy (AP-R is 4,6-di-tert-butyl-N-(2,6-dialkylphenyl)-o-amidophenolate, alkyl = isopropyl (1) or methyl (2); 3,6-DBCat is 3,6-di-tert-butyl-catecholate). Complexes 13 have been obtained by the oxidative addition of corresponding o-iminobenzoquinones or o-benzoquinones to Et3Sb. The addition of 4,6-di-tert-butyl-N-(3,5-di-tert-butyl-2-hydroxyphenyl)-o-iminobenzoquinone to Et3Sb at low temperature gives hexacoordinate [(AP-AP)H]SbEt3 (4) which decomposes slowly in vacuum with the liberation of ethane yielding pentacoordinate complex [(AP-AP)]SbEt2 (5). [(AP-AP)H]2− is O,N,O′-tridentate amino-bis-(3,5-di-tert-butyl-phenolate-2-yl) dianion and [(AP-AP)]3− is amido-bis-(3,5-di-tert-butyl-phenolate-2-yl) trianion. The decomposition of 45 accelerates in the presence of air. o-Amidophenolates 1 and 2 bind molecular oxygen to give spiroendoperoxides Et3Sb[L-iPr]O2 (6) or Et3Sb[L-Me]O2 (7) containing trioxastibolane rings. This reaction proceeds slowly and reaches the equilibrium at 15–20% conversion five times more than for (AP-R)SbPh3 analogues. Molecular structures of 1 and 5 were determined by X-ray analysis.  相似文献   

10.
The synthesis of α-substituted N-[((2S)-2-hydroxy-2-phenyl)-ethyl]-2-phenylglycine derivatives is reported. The key step of the sequence is the highly diastereoselective alkylation of (6R)-2,3,5,6-tetrahydro-3,6-diaryl-N-[(2′R)-(2′-methyl)phenylmethyl]-4H-1,4-oxazin-2-ones after deprotonation with t-BuOK. Opening of the resulting oxazinone with ethanolic KOH, followed by hydrogenolysis of the corresponding N-[(2R)-(2-methyl)phenylmethyl] compound to furnish the expected 2-phenylglycine derivative, is also described.  相似文献   

11.
Solid complexes of lighter lanthanide nitrates with N,N′-dinaphthyl-N,N′-diphenyl-3,6-dioxaoctanediamide (DDD), Ln(NO3)3(DDD) (Ln = La---Nd, Sm) have been prepared in non-aqueous media. These complexes have been characterized by elemental analysis, conductivity measurements, IR spectra, electronic spectra and TG-DTA techniques. In all the complexes, DDD and NO3 are coordinated to the lanthanide ions as tetradentate and bidentate ligands, respectively. The differences in the IR and electronic spectra between these complexes and lanthanide nitrate complexes with N,N,N′,N′-tetraphenyl-3,6-dioxaoctanediamide (TDD) are discussed.  相似文献   

12.
Infrared and Raman spectra of 1,1-(methylphosphinylidene) bis(methanamine) [mpbm, (CH3)PO(CH2NH2)2] and its N,N′-coordinated Pt(II) and Pd(II) have been studied in the 4000–200 cm−1 frequency range. Ab initio calculations have been carried out for different conformations of the mpbm at HF/6-31G* level of the theory from which structural parameters, conformational stability and predicted infrared and Raman spectra have been obtained. A complete vibrational assignment of the lowest energy conformer, tttg, as well as of its N,N′-coordinated Pt(II) and Pd(II) chloro-complexes was done on the basis of the calculated frequencies, relative infrared intensities, Raman activities and potential energy distribution (PED). The theoretical predictions are compared with the experimental results where appropriate.  相似文献   

13.
Protected mesoporous MCM-41 phases were synthesized by grafting of the ligand, (1S,2S)-N,N′-bis-pyridin-2-ylmethyl-cyclohexane-1,2-diamine (L2Me), through the reactive 3-chloropropyltrimethoxysilane (3-CPTMS) group and designated as L2Me-MCM-41. Subsequently, RuCl3 and Fe(BF4)2 or Fe(CF3SO3)2 were added to the heterogenized L2Me-MCM-41 for complexation and designated as M-L2Me-MCM-41 (M = Ru and Fe). All samples were characterized in detail using XRD, N2 sorption isotherm, FT-IR, TGA-DTA, XPS, UV–vis, solid state 13C NMR, EPR and elemental analysis, etc. The XRD and sorption measurements of the catalyst confirmed the structural integrity of the mesoporous hosts and the spectroscopic characterization techniques proved the successful anchoring of the metal complexes over the modified mesoporous support. The screening of catalyst M-L2Me-MCM-41 was done for the oxidation reaction of thioanisole (methyl phenyl sulphide) using H2O2 as an oxidant. The Ru-L2Me-MCM-41 and Fe-L2Me-MCM-41 catalysts show higher activities and turnover numbers and exhibit enantiomeric excess comparable to the homogeneous catalysts, Ru-L2(Me)2 and Fe-L2(Me)2. Furthermore, Fe-L2Me-MCM-41 and Fe-L2(Me)2 were also found active in the epoxidation of styrene. These results indicate that metal complexes are confined into the pore of the material which play a major role in the reaction.  相似文献   

14.
15.
A monoclinic form of the complex between lanthanum(III) nitrate and tetraethylmalonamide (TEMA), La(NO3)3(TEMA)2, 1, differing from the triclinic form 2 previously reported, is described. 1 undergoes an evolution with time which leads to the form 2, which in its turn undergoes a temperature-driven phase transition previously unreported, leading to the formation of 3.  相似文献   

16.
The reaction between the magnesium β-diketonate complex Mg(tmhd)2(H2O)2 and 1 equiv. of N,N,N′,N′-tetramethylethylenediamine (tmeda = Me2NCH2CH2NMe2) in hexane at room temperature yielded Mg(tmhd)2(tmeda). The standard enthalpy of sublimation (83.2 ± 2.3 kJ mol−1) and entropy of sublimation (263 ± 6.3 J mol−1 K−1) of Mg(tmhd)2(tmeda) were obtained from the temperature dependence vapour pressure, determined by adopting a horizontal dual arm single furnace thermogravimetric analyser as a transpiration apparatus. From the observed melting point depression DTA, the standard enthalpy of fusion (58.3 ± 5.2 kJ mol−1) was evaluated, using the ideal eutectic behaviour of Mg(tmhd)2(tmeda) as a solvent with bis(2,4-pentanedionato)magnesium(II), Mg(acac)2 as a non-volatile solute.  相似文献   

17.
Using phosphorus pentachloride as a substrate, a new carbacyclamidophosphate, N,N″-bis (2,6-dimethylmorpholino), N″-dichloroacetyl phosphoric triamide (1) has been synthesized and characterized by 1H, 31P and 13C NMR, IR spectroscopy and elemental analysis. Due to the presence of methyl disubstituted morpholine rings and the dichloroacetamide group, several conformers can be considered for this molecule. The 31P{1H} NMR spectra for the isomeric mixture of synthesized compound showed four signals with the ratio 67.1; 19.0; 12.2; 1.7, which indicates four independent conformers. The 1H NMR spectra confirmed these results. The conformational space and the molecular geometry of the molecule in the gaseous phase have been studied using the B3LYP method of approximation, with 6-31G and 6-311++G** basis sets.  相似文献   

18.
19.
The effect of ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) in stabilizing different shapes of silver nanoparticles have been examined by electronic absorption spectroscopy and transmission electron microscopy. The silver nanoparticles were prepared by two methods, i.e. γ-irradiation and chemical reduction method. Two types of effects of EGTA were identified which lead to the formation of truncated triangular silver nanoplates and chain—like silver aggregates respectively. Time-dependent infrared attenuated total reflectance (ATR-FTIR) studies showed that the nature of adsorption of EGTA on the silver nanoparticle surface influences the shape of the nanoparticles. Pulse radiolysis studies showed the mechanism of formation of the initial silver nanoclusters.  相似文献   

20.
The crystal and molecular structure of the N-(4-chloro)benzoyl-N′-(4-tolyl)thiourea (C15H13N2OSCl, Mr=304.79) is determined by X-ray diffraction. The crystal structure is monoclinic, space group: P21/n, a=16.097(6), b=4.5989(2), c=19.388(7) Å and β=89.299(6)° V=1434.7(9)Å3, Z=4. FTIR and NMR spectra have been characterized. The interactions of intramolecular and intermolecular hydrogen bonds have been discussed. Density functional theory (DFT) (B3LYP) methods have been used to determine the structure and energies of stable conformers. Minimum energy conformations are calculated as a function of the torsion angle θ (C13–N1–C14–N2) varied every 30°. The optimized geometry corresponding to crystal structure is the most stable conformation. This has partly been attributed to intramolecular hydrogen bonds. With the basis sets of the 6-311G* quality, the DFT calculated bond parameters and harmonic vibrations are predicted in a very good agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号