首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Harlin  M. Olsson 《Wear》2009,267(9-10):1482-1489
The abrasive wear resistance of starch consolidated (SC) and super solidus liquid phase sintered (SLPS) M3/2 high speed steel (HSS) samples have been evaluated by a two-body micro-abrasion test (low stress abrasion), using 6 μm diamond abrasive particles, and a three-body abrasion test (high stress abrasion), using significantly larger abrasive particles of blast furnace slag (600 HV) and silicon carbide (2400 HV), respectively. In the tests a commercial powder metallurgical (PM) HSS was used as a reference material.The results show that the microstructure of the SC and SLPS HSS samples is strongly dependent on the sintering temperature used. With increasing temperature the microstructure ranges from a porous (5% porosity) relatively fine grained low temperature sintered microstructure to a fully dense relatively coarse grained high temperature sintered microstructure with eutectic carbides/carbide networks. However, despite the pronounced microstructural differences displayed by the as-sintered HSS microstructures these show a relatively high abrasive wear resistance, comparable with that of a HIPed HSS reference, both under low and high stress abrasion contact conditions. The characteristic features of the low and high temperature sintered microstructures, i.e. the pores and coarse eutectic carbides/carbide networks, only show a limited impact on the wear rate and the wear mode (dominant wear mechanism). The results obtained imply that near net shaped components manufactured by starch consolidation and super solidus liquid phase sintering might be of interest in tribological applications.  相似文献   

2.
The corrosion and tribological behaviour of an as-cast High Carbon CoCrMo alloy subjected to different thermal treatments in simulated body fluids has been analyzed by electrochemical techniques. After the microstructural characterization of the alloy, the samples were studied electrochemically and tribo-electrochemically. Thermal treatments influence the corrosion behaviour, passive dissolution and tribological response. An increase of grain boundaries accelerates the anodic reaction in all solutions. A higher carbide volume fraction generates a lower wear-rate. Microscopic observation by means of Optical and SEM microscopy showed that presence of proteins modified the debris behaviour. In non-protein containing solutions particles are dispersed away from the track while in protein solutions particles tend to agglomerate and sediment around the wear track.  相似文献   

3.
High temperature abrasive wear performance of Inconel 617, Stellite 6 alloys and X32CrMoV33 hot work tool steel was investigated. The wear resistance of the latter is degraded at 750 °C due to its inferior oxidation resistance. Extensive oxidation co-occuring with abrasive wear at 750 °C leads to substantial material loss due to the lack of a protective oxide scale, sufficiently ductile to sustain the abrasion without extensive spalling. The wear resistance of the Inconel 617 and Stellite 6 alloys, on the other hand, improves at 750 °C owing to protective oxides that sustain the abrasion without spalling.  相似文献   

4.
J. Karger-Kocsis  D. Felhs  D. Xu  A.K. Schlarb 《Wear》2008,265(3-4):292-300
The friction, sliding and rolling wear characteristics of thermoplastic dynamic vulcanizates (TPV; Santoprene® grades), composed of polypropylene (PP), ethylene/propylene/diene rubber (EPDM) and extender oil, were studied against steel counterparts in dry condition. The composition and basic mechanical properties of the TPV of various hardness (Shore A = 60°, 70° and 80°) were evaluated. The wear performance of the TPVs was investigated in different tribotests, viz. pin-on-plate (POP), cylinder-on-plate (fretting) and rolling ball-on-plate (RBOP), whereby “plate” was always the rubber. From the above tests the coefficient of friction (COF) and specific wear rate were determined. It was established that with increasing hardness usually both COF and the specific wear rate were reduced. Values of the COF and wear rate depended strongly on the configuration and testing parameters of the related tribotests. The wear mechanisms were concluded by inspecting the worn surfaces by white light profilometry and scanning electron microscopy (SEM), respectively, and discussed.  相似文献   

5.
The friction and wear properties of TiC–NiMo/steel rubbing pairs were investigated under dry condition. The sliding wear tests were carried out on the testing device at a velocity of 2.2 m/s and a load of 40 N. The volume wear increases with increase of the sliding distance as predicted by Archard’s equation. The wear coefficient of the cermets reduces with the increase of TiC and Mo content in the composite. The study has shown that the coefficient of friction was approximately the same for all the samples. The main wear mechanism in the TiC–NiMo cermets was micro-abrasion (polishing) and adhesive wear. At the initial stages of wear, adhesive wear characteristics featured by mild scratching and plastic smearing were observed on the worn surface, but at the later stages, contact fatigue failure of a relatively thick surface layer takes place.  相似文献   

6.
The fundamental aim of the present research is to study the effect of dimple shape and area density on abrasive wear in lubricated sliding. The other aims are to recommend a method of obtaining the local linear wear of a textured ring on the basis of profilometric measurement and to analyse the changes in the surface topography of this ring with selection of parameters that could monitor the “zero-wear” process.The experiments were conducted on a block-on ring tester. The stationary block made from cast iron of 50 HRC hardness was ground. The rotated ground ring was made from 42CrMO4 steel of 32 HRC hardness. The rings were modified by a burnishing technique in order to obtain surfaces with oil pockets. Oil pockets of spherical and of drop shape were tested. The pit-area ratios were in the range: 7.5–20%. The tested assembly was lubricated by oil L-AN 46. Because of the great hardness of the co-acting parts the wear resistance test was carried out under artificially increased dustiness conditions. The dust consists mainly of SiO2 and Al2O3 particles. Measurement of local microscopic ring wear was made using a three-dimensional scanning instrument. The tendencies of ring surface topography changes during wear were analysed. Various methods of obtaining the local wear value during a low wear process were proposed and compared. We found that a spherical shape of dimples was superior to a drop shape with regard to wear resistance of steel rings.  相似文献   

7.
Jos Rendn  Mikael Olsson 《Wear》2009,267(11):2055-2061
The aim of the present study is to evaluate the abrasive wear resistance of some potential abrasion resistant steels exposed to different types of abrasive wear contact conditions typical of mining and transportation applications. The steels investigated, include a ferritic stainless steel, a medium alloyed ferritic carbon steel and a medium alloyed martensitic carbon steel.The abrasive wear resistance of the steels was evaluated using two different laboratory test methods, i.e. pin-on-disc testing and paddle wear testing that expose the materials to sliding abrasion and impact abrasion, respectively. All tests were performed under dry conditions in air at room temperature. In order to evaluate the tribological response of the different steels post-test characterization of the worn surfaces were performed using optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Besides, characterization of the wear induced sub-surface microstructure was performed using optical microscopy.The results show that depending on the abrasive conditions a combination of high hardness and toughness (fracture strain) is of importance in order to obtain a high wear resistance. In the pin-on-disc test (i.e. in sliding abrasion) these properties seem to be controlled by the as-rolled microstructure of the steels although a thin triboinduced sub-surface layer (5–10 μm in thickness) may influence the results. In contrast, in the paddle wear test (i.e. in impact abrasion), resulting in higher forces acting perpendicular to the surface by impacting stones, these properties are definitely controlled by the properties of the active sub-surface layer which also contains small imbedded stone fragments.  相似文献   

8.
The mechanism of three-body abrasive wear of TiC-base cermets was studied. The wear rate of a series of cermets with different percentage of NiMo binder phase (20–60 wt%) was studied. Silica sand was used as an abrasive. The wear rate of the cermets decreases with the increase of TiC and Mo content, which corresponds to the increase in the bulk hardness. The post-run wear tracks of the worn blocks were analyzed with SEM. The material is removed by several processes such as extrusion and removal of the binder and also fractures of the carbide grains and the carbide network.  相似文献   

9.
The sliding wear behaviour of zinc–nickel electrodeposited coatings on mild steel substrates was investigated using a spherical pin-on-disc apparatus. The pin materials were alumina and hardened steel. The composition of the coatings was the following: 86 wt% zinc–14 wt% nickel. The friction coefficient of zinc–nickel coating against alumina counter spheres was found to be higher than that against hardened steel counter spheres. The weight loss of zinc–nickel coating after sliding against hardened steel counter spheres was found to be lower than that against alumina counter spheres. The main wear mechanism of the zinc–nickel coating sliding against stainless steel was noted to be severe shearing of the surface layers of the coating due to the ploughing action of the steel pins. For the wear experiments of zinc–nickel coatings against alumina spheres, a surface delamination mechanism is proposed to be the predominant wear mechanism of the coatings.  相似文献   

10.
The wear resistance of a low alloy plastic mold steel has been studied under pin-on-flat reciprocating configuration against AISI 52100 steel pins, under variable sliding frequency. The as-received material (HTO; 33 HRC) was heat treated under variable conditions to obtain different microstructures and hardness (HT1, quenched 880 °C, 58 HRC; HT2, tempered 550 °C, 43.4 HRC; HT3, tempered 300 °C, 52 HRC; HT4, annealed, 26 HRC). Under low sliding frequency (1 Hz), no significant differences in the wear resistance of the different materials are observed. Only at 8 Hz, a relationship between hardness and wear resistance is found. The softer annealed material HT4 shows an increasing wear rate under increasing frequency, while the quenched steel HT1 gives the lowest wear at the highest frequency. Wear mechanisms have been studied from SEM and EDS observations. Only HT4 shows a transition from the abrasive and oxidative wear mechanisms found in all cases to an adhesive wear mechanism under the highest frequency.  相似文献   

11.
Abrasive wear behaviour of laser sintered iron–SiC composites   总被引:1,自引:0,他引:1  
Direct metal laser sintering (DMLS) is one of the popular rapid prototyping technologies for producing metal prototypes and tooling of complex geometry in a short time. However, processing of metal matrix composites (MMCs) by laser sintering is still in infant stage. Thermal cracks and de-bonding of reinforcements are reported while processing MMCs by laser sintering process. There are reports on use of metallic-coated ceramic reinforcements to overcome these problems. The present investigation is aimed at using nickel-coated SiC in developing iron composites by DMLS technique and to characterize its abrasive wear behaviour.Microstructure, microhardness, and abrasive wear tests have been carried out on both DMLS iron and its composites sintered at a laser scan speed of 100 mm/s. Abrasion wear tests have been carried out using a pin-on-disc type machine. SiC abrasive papers of grit size 60, 80, and 150 having an average particle size of 268, 192, and 93 μm, respectively, have been used. Load was varied between 5 and 25 N in steps of 5, while the sliding distance and sliding velocity of 540 m and 2.5 m/s, respectively was adopted for all the tests. Optical, scanning electron micrograph and surface roughness observation of worn surfaces have been undertaken.An increase in microhardness and a decrease in density of the laser sintered iron–SiC composites was observed with increase in SiC content. The abrasive wear resistance of composites increases with increased content of SiC in iron matrix. For a given grit size of SiC abrasive paper, at all the loads studied, iron–SiC composites exhibit excellent abrasive wear resistance. Increase in abrasive wear was observed with the increase in abrasive particle size.  相似文献   

12.
Abstract

Abrasive wear in industrial applications such as mining, materials handling and agricultural machinery constitutes a large part of the total wear. Hardened high strength boron steels are known for their good wear resistance and mechanical properties, but available results in the open literature are scarce. This work aims at investigating how different quenching techniques affect the two-body abrasive wear resistance of hardened high strength boron steels. Furthermore, the wear as a function of depth in thicker hardened high strength boron steel plates has also been studied. The material characterisation has been carried out using microhardness, SEM/energy dispersive spectroscopy and three-dimensional optical surface profilometry. The results have shown that water quenched and tool quenched high strength boron steel had similar wear resistance. The main wear mechanisms appear to be microcutting combined with microfatigue. Workhardening during the abrasion process has been found to affect the abrasive wear.  相似文献   

13.
The recent years have witnessed an increasing usage of high-strength steels as structural reinforcements and in energy-absorbing systems in automobile applications due to their favourable high-strength-to-weight ratios. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot-metal forming. The high-strength steel sheets are in some instances used with an Al–Si-coating with a view to prevent scaling of components during hot-metal forming. However, friction and wear characteristics of Al–Si-coated high-strength steel during interaction with different tool steels have not yet been investigated. With this in view, friction and wear behaviours of different tool steels sliding against Al–Si-coated high-strength steel at elevated temperatures have been investigated by using a high-temperature version of the Optimol SRV reciprocating friction and wear tester at temperatures of 40, 400 and 800 °C. In these studies both temperature ramp tests with continuously increasing temperature from 40 to 800 °C and constant temperature tests at 40, 400 and 800 °C, have been conducted. The results have shown that both the friction and wear of tool steel/Al–Si-coated high-strength steel pairs are temperature dependent. Friction decreased with increasing temperature whereas wear of the tool steel increased with temperature. On the other hand, the Al–Si-coated high-strength steel showed significantly lower wear rates at 800 °C as compared to those at 40 and 400 °C. The Al–Si-coated surface undergoes some interesting morphological changes when exposed to elevated temperatures and these changes may affect the friction and wear characteristics. The mechanisms of these changes and their influence on the tribological process are unclear and further studies are necessary to fully explain these mechanisms.  相似文献   

14.
B. K. Prasad   《Wear》2000,240(1-2):100-112
Some observations pertaining to the sliding wear characteristics of a zinc–aluminium alloy containing nickel under varying material and test conditions have been reported in this investigation.

Dry sliding wear tests were conducted on as-cast and heat-treated zinc-based alloy pins using a pin-on-disc machine. A steel disc was employed as the counterface. Sliding speeds adopted were 0.42, 2.68 and 4.60 m/s while the traversal distance was fixed at 500 m. Wear tests were conducted at different pressures using separate pins in each case. Seizure pressure of the pins (prior to traversing the sliding distance of 500 m) was determined at each speed.

Wear rate and the extent of frictional heating increased with pressure and speed whereas seizure pressure practically followed a reverse trend. The wear rate versus pressure plot of the as-cast alloy pins assumed two slopes at the lowest speed wherein low slope (indicating the occurrence of mild wear situation) was noticed initially. This was followed by the attainment of a higher slope suggesting severe wear condition at increased pressures. At higher speeds, one slope only (identical to the higher slope at the minimum speed) was noted. Wear rate versus pressure plots of the heat-treated alloy pins followed a trend similar to the as-cast ones except that two slopes were noted up to the intermediate speed in the former case.

Heat treatment changed the as-cast dendritic structure of the zinc-based alloy into the one with an improved uniformity of the distribution of various microconstituents, the nickel containing phase remaining practically unaffected. Softening of the (as-cast) alloy was also observed as a result of the heat treatment. However, in spite of reduced hardness, the heat-treated alloy pins attained improved wear behaviour (i.e. reduced frictional heating and low wear rate) over the as-cast ones irrespective of the test conditions. This was attributed to a more uniform distribution of microconstituents and reduced cracking tendency of the alloy as a result of the heat treatment. The alloy pins also attained better seizure pressure in heat-treated condition comparing with the as-cast ones at all the speeds except the maximum for the same reasons. A reversal in the trend at the maximum speed was thought to be due to the over-softening of the already softened (heat-treated) alloy pins under the influence of large frictional heat generated at the (maximum) speed. Under the circumstances, the heat-treated alloy pins tended to adhere/fuse with the disc extensively while this tendency was relatively less for the as-cast ones in view of their higher hardness. Further, the extent of the negative influence of cracking tendency reduced allowing thermal stability to predominate the wear behaviour of the as-cast alloy pins in this case. The factor led to somewhat higher seizure pressure of the (as-cast) alloy pins at the maximum speed comparing with the heat-treated ones.

Low wear rates correlated with less damage to the worn surfaces and to the regions below the worn surfaces and finer debris formation. Seizure led to severe damage to the worn surfaces and to the regions below the worn surfaces while the debris formed was quite bulky and coarser.  相似文献   


15.
J.J. Coronado  A. Sinatora 《Wear》2009,267(11):2116-1287
The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 °C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M3C carbides. Samples with cooling rate of 15 °C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 °C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M3C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 °C/s, for grain size of 66 and 93 μm. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe.  相似文献   

16.
In the present study, the effect of granite reinforcement on the dry sliding wear behaviour of an aluminium–silicon alloy (BS:LM6) was investigated using a pin-on-disc machine. The composite was prepared using liquid metallurgy technique wherein 10 wt.% granite particles were incorporated in the matrix alloy. Sliding wear tests were conducted at applied loads in the range 0.2–1.6 MPa and speeds of 1.89, 3.96 and 5.55 m/s. The matrix alloy was also prepared and tested under identical conditions in order to see the influence of the dispersoid phase on wear behaviour. It was observed that the composite exhibited lower wear rate than that of the matrix alloy. Increasing applied load increased the wear rate. In the case of the composite, the wear rate decreased with speed except at higher pressures at the maximum speed; the trend reversed in the latter case. On the contrary, the matrix alloy exhibited minimum wear rate at the intermediate test speed. Seizure pressure of the composite was significantly higher than that of the matrix alloy, while temperature rise near the contacting surfaces and the coefficient of friction followed an opposite trend. SEM examination of the worn surfaces, subsurface regions and debris enabled to understand the operating wear mechanisms.  相似文献   

17.
A ball cratering test has been used to investigate the abrasive wear of high speed steels with different volume fraction and size of primary carbides. Three different abrasives, SiC, Al2O3 and ZrO2 were used. Wear mechanisms were investigated by scanning electron microscopy (SEM). A good correlation between the hardness of the abrasives and the abrasive wear coefficient was found. Higher abrasive wear resistance was determined for steels containing coarser primary carbides compared to those without or with smaller carbides. The most pronounced difference in abrasive wear resistance was found for Al2O3 abrasives. This indicates that in ball cratering the abrasive medium has to be chosen properly, i.e. with a hardness adjusted to those of both primary carbides and martensitic matrix, to obtain results suitable to rank high speed steels with respect to abrasion resistance.  相似文献   

18.
Abstract

Mechanical components in tribological systems exposed to elevated temperatures are gaining increased attention since more and more systems are designed to operate under extreme conditions. In hot metal forming, the effect of temperature on friction and wear is especially important since it is directly related to process economy (tool wear) and quality of the produced parts (friction between tool and workpiece). This study is therefore focused on fundamental understanding pertaining to the tribological characteristics of prehardened hot work tool steel during sliding against 22MnB5 boron steel. The tribological tests were carried out using a high temperature reciprocating sliding friction and wear tester under a normal load of 31 N (corresponding to a contact pressure of 10 MPa), a sliding speed of 0·2 m s?1 and temperatures ranging from 40°C to 800°C. It was found that friction coefficient and specific wear rate decreased at elevated temperature because of formation of compacted wear debris layers on the surfaces.  相似文献   

19.
The effect of various parameters in the process of three-body abrasive wear is analysed by fatigue theory. A formula for the wear volume in three-body wear is derived. Results indicate that this formula can basically reflect behaviour in three-body wear experiments.  相似文献   

20.
Some of the major processes that are likely to be involved in wear — namely, adhesion, abrasion, fatigue, delamination and oxidation — are described. An outline of the Systems Concept in the analysis of wear processes is given. Some wear theories and various factors that affect wear, such as distance of travel, speed, applied load, material and temperature, are also discussed. The latter part of the paper reviews recent literature pertinent to vibration-induced wear, eg impact and fretting of power plant components — more specifically, heat exchangers. Several predictive models for tube wear are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号