首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
利用包埋广谱性高效反硝化填料处理城市污水厂二级出水,可有效降低出水总氮(TN)浓度,本研究共分为两部分,D1阶段研究了包埋反硝化填料对污水厂二级出水的适应性、TN去除效果、稳定运行及填料反冲洗的工况条件; D2阶段研究了填料在中试条件下稳定运行1 a脱氮性能的变化,并通过高通量测序和荧光定量分析(q PCR)手段,研究对比了包埋填料运行前后微生物种群的变化规律.通过研究发现,包埋反硝化填料在水温为(24±1)℃、pH为7. 1、HRT为1 h和填充率为10%,投加乙酸钠保证碳源充足的条件下稳定运行7 d,即可适应二级出水水质,实现出水总氮<5 mg·L-1.通过对比研究不同水力停留时间(HRT)对填料TN去除效果的影响,得出适宜的HRT为30 min,填充率为10%的运行条件,在7. 2 m3·d-1的进水条件下经过1 a的稳定运行,TN去除率最高可达到90. 42%,出水总氮可稳定在5 mg·L-1以下.通过对比反冲洗效果,确定了反冲洗强度为5. 2 L·(m2·s)<...  相似文献   

2.
采用升流式颗粒污泥床,外加Na<,2>S<,2>O<,3>作为电子供体,在室温下连续运行220 d,结合硫自养反硝化与固定化包埋技术进行脱氮实验,考察包埋颗粒的驯化条件、影响因素和最佳运行条件.进水负荷(以N计)维持0.22 kg/(m<'3>·d),包埋颗粒经23 d驯化成功,NO<'-><,3>-N(100 mg/...  相似文献   

3.
铁-硫自养反硝化是一种高效环保的生物工艺,被认为是有效处理低碳氮比污水的方法之一。相较于传统的硫基自养反硝化和铁基自养反硝化,铁-硫自养反硝化有着更高的反硝化能力,无须外加p H缓冲物质,具有二次污染小、氮磷同步去除等优势。该文介绍了铁-硫自养反硝化的形成过程及作用机理,并系统梳理了近年来铁-硫自养反硝化的发展和应用现状;阐述了铁-硫自养反硝化应用于污水处理领域的现状,对未来铁-硫自养反硝化的研究方向进行了展望。  相似文献   

4.
针对饮用水硝酸盐污染和固定床硫自养反硝化脱氮负荷低等问题,开展流化床型硫自养反硝化脱氮研究,探究聚乙烯醇-海藻酸钠-活性炭悬浮填料对硫自养反硝化的影响,并对比了不同硫源(升华硫、硫代硫酸钠和生物硫)对反硝化效果的影响.结果表明,悬浮填料可显著提升反硝化脱氮效果,升华硫与硫代硫酸钠效果优于生物硫.在最佳条件下,TN去除率可稳定保持在98.49%,TN脱氮负荷达2.84 g·L-1·d-1.机理分析表明,悬浮填料中海藻酸钠可作为异养反硝化的有机碳源,实现自养与异养反硝化相结合,减少了副产物NO2-和SO42-的生成,并提供碱度,保持体系pH的稳定.加入悬浮填料后,反硝化微生物生长得到促进,优势菌属为Thauera(兼性自养反硝化菌)和Brachymonas(异养反硝化菌).  相似文献   

5.
1株铁基质自养反硝化菌的脱氮特性   总被引:1,自引:5,他引:1  
王弘宇  杨开  张倩  季斌  陈丹  孙宇翀  田俊 《环境科学》2014,35(4):1437-1442
从武汉市东湖深层底泥中分离得到1株铁基质自养反硝化细菌W5,对其自养反硝化脱氮性能进行了研究.结合生理生化试验和16S rRNA基因序列分析,初步鉴定菌株W5属于微杆菌属(Microbacterium sp.).对其脱氮能力和影响因素的研究结果表明,W5菌株的最适脱氮培养条件为NO-3-N 40 mg·L-1,Fe2+500 mg·L-1,pH 6.8~7.0.在最适脱氮条件下培养一周,硝酸氮去除率可达到87.0%,在整个培养过程中亚硝氮产生量很少,最高不超过0.31 mg·L-1.同时未见有氨氮生成,硝酸氮大部分转化成N2.作为电子供体的Fe2+的氧化率达到95.2%.  相似文献   

6.
生物循环流化床工艺自养反硝化研究   总被引:2,自引:0,他引:2  
对城市污水厂排水进行深度处理时,生物循环流化床提供的兼性环境有利于好氧硝化细菌和兼性厌氧自养反硝化细菌的生长,自养反硝化细菌可以在低有机碳源的情况下,以硫为电子供体进行自养反硝化从而去除NO3--N. 试验以硫作为反硝化的电子供体引入自主研发的生物循环流化床中进行脱氮,试验进水各项指标参照北京市水污染物排放标准(DB11 307-2005)二级限值. 在6个不同的工况下运行,工况5出水水质可达到国家再生利用景观环境用水的水质,出水ρ(NO3--N)为9.23 mg/L,去除率为70.61%;出水ρ(NH4+-N)为2.36 mg/L,去除率为77.54%;出水ρ(TN)为13.53 mg/L,去除率为68.91%;出水ρ(SO42-)为245.15 mg/L,去除的NO3--N与生成的SO42-质量比为1∶7.7.   相似文献   

7.
硫/石灰石自养反硝化工艺的研究   总被引:6,自引:0,他引:6  
本文对上流式硫/石灰石生物自养反硝化法的各种工艺参数及影响因素进行了试验研究。研究结果表明:滤柱原本中需投加少量的磷酸盐.当温度为22℃时,滤柱的临界硝酸盐体积负荷为5559NO3--N/m3·d。12℃时,临界负荷为380gNG3--N/m3·d.滤柱若在高于临界负荷下运行,则不可能达到完全反硝化出水中存在亚硝酸盐.若在低于临界负荷下运行,反硝化效率为100%,亚硝酸盐在滤柱底部产生,而在滤柱上部还原为氮气,出水中不存在亚硝酸盐.  相似文献   

8.
支尧  张光生  钱凯  李激  王硕 《中国环境科学》2018,38(6):2097-2104
为了实现深度脱氮除磷效果,利用生物吸附/MBR/硫铁自养反硝化组合工艺进行优化研究,考察了不同HRT和硫铁体积比对系统脱氮除磷的影响.结果表明,MBR池和硫铁自养反硝化滤池的HRT分别在9h和3h条件下,污染物去除效果最佳,63%的COD在生物吸附段被去除,工艺系统平均出水COD、NH4+-N、NO3--N、TN浓度分别为18.9,0.36,0,3.3mg/L,实现了污染物的超低排放.硫铁反硝化滤池的硫铁体积比为3:1条件下,出水TP平均浓度为0.29mg/L;其中大部分NO3--N在滤池高度10~30cm处被去除,脱氮速率约为46.1gNO3--N/(m3·h).同时组合工艺在运行期间,采用间歇抽吸方式和较高曝气量能有效减缓膜污染进程.  相似文献   

9.
硫自养反硝化因无需外加碳源、运行过程无CO2直接碳排放,且硫或硫化物价格低廉而开始进入大众眼帘.硫自养反硝化概念始于20世纪70年代,但国际上对其研究与应用一直默默无闻,反而是近年来在我国方兴未艾,这一反差现象耐人寻味.通过对硫循环及硫资源概括总结发现,全球硫储量虽多,但硫资源开采主要来源于石油、天然气冶炼过程中对硫的回收,获得并不具有持久性.对硫自养反硝化过程原理、存在问题、直接碳排放等分析显示,自养反硝化速率较异养反硝化低61.5%~75.6%,反应过程会产生大量SO42-.此外,还存在硫填料滤床穿透逐渐降低处理负荷等问题.碳排放分析揭示,低pH(<6.5)会抑制反应进程,可能导致反硝化止步于氧化亚氮(N2O)而产生相当释放量.相反,除外加碳源导致CO2直接排放问题外,异养反硝化在同步脱氮除磷方面优势明显.况且,碳源缺乏问题存在多种解决方案,完全可以通过不外加碳源或选择废弃生源性碳源来解决碳排放问题.因此,在选择正确脱氮除磷技术路径时需要在深入了解反应机理的基础上,全...  相似文献   

10.
采用硫自养反硝化工艺处理模拟污水厂二沉尾水,分别以硫磺/白云石、黄铁矿/白云石为填料,考察不同填料下生物滤池的脱氮除磷效果.结果表明,在HRT(水力停留时间)为1 h的条件下,硫磺/白云石反应器在10 d内能迅速启动,出水ρ(NO3--N)小于1.00 mg/L,去除率高达99%,反应器的最佳实际HRT为45 min.进水中的DO对硫磺/白云石反应器反硝化效果没有明显影响,但会对黄铁矿/白云石反应器的反硝化效果产生影响.去除进水中的DO后,在HRT为4 d下,黄铁矿/白云石反应器出水NO3--N和TP的质量浓度分别为10.31和0.10 mg/L,其去除率分别为67.2%和90.7%.采用高速水流反冲洗后,两个反应器的脱氮效果均能在2 d内迅速恢复.在12 ℃的低温条件下,硫磺/白云石和黄铁矿/白云石反应器的处理效果均变化不大.去除一定量的NO3--N时,硫磺/白云石反应器的SO42-生成量与理论值相符合,黄铁矿/白云石反应器的略高于理论值.研究显示,硫磺/白云石体系可有效去除二沉尾水中的NO3--N,而黄铁矿/白云石体系具有同时脱氮除磷的功能.   相似文献   

11.
研究了单质硫颗粒自养反硝化柱中表面和间隙生物膜的微生物群落结构、功能基因和代谢途径等生物信息学特征.结果表明,硫颗粒表面生物膜的微生物菌群多样性低于间隙生物膜.氮代谢功能基因丰度差异较为显著,间隙生物膜中硝酸盐和亚硝酸盐的胞外转运蛋白基因丰度远高于表面生物膜,分别为0.0792%、0.109%与0.0157%、0.0314%.对于还原性反硝化代谢,表面生物膜的总基因丰度却明显低于间隙生物膜,分别为0.367%、0.406%.此外,参与反硝化过程的基因丰度明显不同,特别是将NO3-还原成NO2-以及将N2O还原成N2过程中的基因.对于硫代谢,没有观察到明显的差异.APS (硫酸腺苷)氧化是将SO32-氧化为SO42-的主要途径,其基因丰度远远高于直接氧化途径,分别为0.137%与0.0005%(表面)、0.138%与0.0007%(间隙).结果表明,在单质硫自养反硝化过程中,间隙生物膜与表面生物膜中的微生物存在合作关系,协同促进硫自养反硝化脱氮过程.  相似文献   

12.
为实现污水处理的深度脱氮除磷及蛋白质源污泥增量,进行了生物吸附/MBR/硫铁自养反硝化组合工艺处理城镇污水的试验研究.结果表明,生物吸附池可以快速富集进水中的大部分有机物,COD平均去除率为55.1%,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.通过组合工艺系统中的硝化、硫自养反硝化及铁屑除磷作用,出水氨氮、总氮和总磷分别达到1、5和0.4 mg·L~(-1)以下.优质碳源投加到MBR工艺段,碳源环境的改善使得污泥增长率从0.17 g VSS/g COD提高至0.49 g VSS/g COD,进水中总氮的同化比例从40%提高至59%.此外,污泥中蛋白质及氨基酸含量也显著增长,增长率分别为18.3%和19.7%.组合工艺在获得高排放标准水质的同时,实现了高蛋白质源污泥的增量,可为污泥资源化利用提供优质原料.  相似文献   

13.
为探究硫自养反硝化所需的最低磷浓度,对硫自养反硝化系统进行磷饥饿处理,给予不同磷浓度的进水,考察磷浓度对硫自养反硝化效果和微生物群落结构的影响。结果表明:随着磷饥饿期的延长,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率由饥饿前的98.1%~99.6%逐步降至24.8%~49.6%,且出水中随之出现亚硝酸盐的积累。补充磷后,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率随进水磷浓度的增加显著提升,且进水磷浓度越高,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率能越快恢复至饥饿前水平(98%以上),出水中的亚硝酸盐氮浓度也越快降至饥饿前水平(不足0.05 mg/L)。当进水中磷浓度不低于0.200 mg/L时,硫自养反硝化效率不受磷浓度限制。磷浓度影响硫自养反硝化系统的微生物多样性,磷恢复处理组的物种多样性和丰度均显著高于磷饥饿处理组。在磷恢复处理组中,硫自养反硝化相关的功能菌属是优势菌属,相对丰度占45.78%,而在磷饥饿处理组中,该功能菌属相对丰度仅占4.67%,磷浓度极大地影响了硫自养反硝化系统中的硫自养反硝化相关功能菌的相对丰度。  相似文献   

14.
电化学氢自养与硫自养集成去除饮用水中的硝酸盐   总被引:21,自引:0,他引:21       下载免费PDF全文
研究了一种电化学氢自养与硫自养集成去除饮用水中硝酸盐的方法,将2种自养反硝化集成,既可减少以硫作为电子供体产生的SO4^2-,也可以使硫自养反硝化产生的H^ 作为电化学产氢的前驱物。同时,在硫自养段可不添加调pH的CaCO3,避免了出水的硬度升高。试验结果表明,在反应器的水力停留时间(HRT)为1.9-5h,最小电流相应为3-16mA时,NO3^--N去除率达90%以上,出水中NO3^--N和SO4^2-浓度分别低于3.0mg/L和170mg/L,NO2^--N未检出,硫段和电氢段出水pH值均维持在中性附近。  相似文献   

15.
以实验室成功启动的硫自养短程反硝化污泥作为接种污泥,通过批次试验分别探究HRT、pH值和温度对反应过程的影响.研究表明,控制条件参数HRT为5h、pH值为7.5、温度为30℃时,亚硝酸盐和单质硫积累效果最佳,分别达到92.53%和59.36%.对以上最佳参数条件下运行的污泥取样进行微生物高通量分析,Proteobacteria菌门丰度达到91.44%,是自养反硝化的主要菌门,Thiobacillus菌属丰度为66.04%,是实现硫自养短程反硝化过程中稳定单质硫和亚硝酸盐的主要贡献者.对反应出水中的生物单质硫进行絮凝沉淀回收,响应面优化结果表明,絮凝剂PAC投加量为7.73mL/L、pH值为4.53、搅拌速度为220r/min为生物单质硫絮凝的最佳匹配参数.平行试验验证得平均单质硫絮凝率(SFE)为88.1%.  相似文献   

16.
马航  李祥  黄勇  魏凡凯 《中国环境科学》2016,36(12):3672-3677
以光伏废水为研究对象,利用启动成功的协同反硝化反应器,在进水F-浓度为800mg/L,NO3--N为350mg/L的条件下,控制进水C/N为0.7左右,实现反硝化过程无需酸碱调控,TN去除率为90%以上,TN去除速率为2.0~2.5kg/(m3·d).除氟试验表明,通过投加CaO初步除氟能将F-浓度降低至800mg/L,同时将pH提升至7.68,满足协同反硝化的pH范围(7.5~8.5)要求;二次除氟能有效降低废水中残余的F-及协同反硝化生成的SO42-.针对多数含F-浓度超过800mg/L的光伏废水,可采用先初步除氟、协同反硝化脱氮,最终二次除氟、除硫酸盐的工艺路线.相比于完全异养反硝化脱氮处理光伏废水,采用协同反硝化可节约脱氮成本0.82元/t.  相似文献   

17.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

18.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

19.
传统反硝化工艺是非常有效的废水脱氮技术,具有反应快、效率高等优点,但受废水中有机碳源浓度影响较大.废水中碳源不足不能满足生物反硝化脱氮的需求且会导致总氮(TN)去除率偏低,而投加外源有机碳源会提高处理成本,极易造成二次污染,因而传统反硝化工艺对低碳氮比(C/N)废水脱氮处理具有一定局限性.铁型反硝化脱氮技术作为自养反硝...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号