首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 562 毫秒
1.
兰科Orchidaceae植物具有唇瓣、蕊柱等独特花形结构。近年来,关于兰科植物开花调控的研究取得了一定的进展,已分离鉴定出一些花发育调控基因,包括花器官特异基因及一些花分生组织特异基因。研究表明: MADS-box等基因在兰花的成花转换及花器官形成过程中起重要作用,特别是B类基因的表达及功能可能与兰花结构的特异性及多样性有关。表1参33  相似文献   

2.
【目的】AP1 基因在植物的花器官发育和开花调控中发挥重要作用,对墨兰 AP1 基因进行克隆与表达分析可为研究其在墨兰花发育和开花调控中的作用提供前期基础。【方法】以墨兰品种‘小香’为材料,克隆到 1 个 AP1 基因,命名为 CsAP1-A。通过生物信息学分析其基因结构、蛋白结构域和进化关系,利用 RT-qPCR 方法分别检测 CsAP1-A 在墨兰不同器官、不同花发育阶段和不同花组织部位的表达情况;通过转录组测序分析 CsAP1-A 在 5 个不同花型墨兰品种花组织部位的表达情况;通过蛋白互作预测软件分析 CsAP1-A 与其他蛋白的互作关系。【结果】CsAP1-A 基因编码区为 744 bp,编码 248 个氨基酸,含有高度保守的 MADS-box 和K-box 结构域,符合 MADS-box 转录因子家族特征。CsAP1-A 与其他兰科植物 AP1 蛋白相似性较高,其中与春兰 AP1/FUL3(APY18447.1)和蕙兰 MADS1(AGE15496.1)的同源性最高。RT-qPCR 分析结果表明,CsAP1-A在墨兰不同器官中均有表达,在花中表达量最高,且集中在花芽分化初期(S1)高表达。在不同花型的墨兰品种中,CsAP1-A 在 WT(普通型)、MPV(重瓣花型)、LaPV(花瓣唇瓣化花型)和 NLV(唇瓣萼片化花型)4 种花型的合蕊柱中表达量均最高,而在萼片中表达量最低;在合蕊柱异常发育的 MPV 中,CsAP1-A 在合蕊柱的表达量显著提高,而在花瓣蕊柱化的梅瓣花型(GPV)中整体表达量最高,且表达区域从合蕊柱扩展到花瓣。蛋白互作预测 CsAP1-A 蛋白可与 MADS1、MADS6、MADS47、MADS8 等 10 个蛋白存在互作关系。【结论】墨兰 CsAP1-A 的基因结构、进化关系、时空表达情况和蛋白互作预测可为墨兰花发育的研究提供理论依据,对进一步揭示 CsAP1-A 基因在墨兰成花过程中的作用奠定基础。  相似文献   

3.
为了更有效地对开花植物中最大家族之一的兰科(Orchidaceae)植物进行开花调控,对具有蕊柱和唇瓣等独特花结构的兰花花器官调控和成花过程的分子遗传基础进行了阐述,并在此基础上对兰科花发育的调控进行了展望。结果表明:1)兰花花器官ABCDE模型中,A和E类基因决定萼片,A、B和E类基因决定花瓣,B、C和E类基因决定雄蕊,而D和E类基因决定心皮;2)温度、光周期和激素是决定兰花花起始和发育的关键;3)成花过程中的转录组、基因组以及功能基因验证的研究,取得了较大的突破。综上,本研究可为兰花花发育的分子遗传基础研究开辟新的思路。  相似文献   

4.
春兰GLO基因的克隆和实时定量表达分析   总被引:1,自引:0,他引:1  
采用RT-PCR结合RACE技术从春兰(Cymbidium goeringii)中分离到一个GLO基因.该基因含有一个630 bp的开放阅读框(ORF),共编码210个氨基酸.系统进化树分析显示,该基因属于B类MADS-box基因的PI/GLO家族,其编码的蛋白与其他植物PI/GLO类蛋白具有很高的同源性,命名为CgGLO(登录号HM106984).实时荧光定量表达分析表明,CgGLO主要在第二轮花器官唇瓣和花瓣中表达,在萼片、子房和叶片中表达较少,在蕊柱和根中表达量最少,这种表达模式支持了van Tunen对ABC模型的修正,也显示了CgGLO基因可能在春兰花器官以及子房的形成过程中起着重要作用.  相似文献   

5.
通过对蝴蝶兰的子房、花瓣、唇瓣和合蕊柱进行切片,建立了蔗糖保护-液氮冷冻的冰冻切片技术体系。将蝴蝶兰花器官经过蔗糖磷酸缓冲液保护液处理后抽真空,再经过液氮速冻、固定、包埋、切片、展片观察、染色以及拍照,制作出蝴蝶兰花器官较完整的显微结构切片。研究结果表明,蝴蝶兰花器官冰冻切片最适条件为:(1)蔗糖磷酸缓冲液处理的最适质量分数为子房4%,花瓣8%,唇瓣4%,合蕊柱16%;(2)最适切片厚度为子房15μm,花瓣10μm,唇瓣20μm,合蕊柱10μm;(3)子房、花瓣和唇瓣最适染色方法均为番红单染色法,合蕊柱最适染色方法为番红-固绿双染色法,4种花器官均不适合单独使用固绿染色。  相似文献   

6.
蝴蝶兰兰科蝴蝶兰属.无假鳞茎,茎肥厚、极短,叶片从茎顶部的生长点长出,排成2列,叶片扁平、肥厚多肉,一般较宽,基部具有关节和抱茎的鞘.根从节处长出,总状花序则从茎基部的叶腋抽出,有时有分枝;种类不同,花朵大小和小花数也不同;花萼片等大,离生,平展,花瓣与萼片相近但较萼片宽阔,基部有爪;唇瓣的爪紧贴在蕊柱栏上,唇瓣3裂,中裂片肉质,其附属物为二叉状;蕊柱细长,布明显的蕊柱足.  相似文献   

7.
8.
9.
利用RT鄄PCR 技术,揭示了BpMADS3 基因在白桦不同组织中的差异表达模式:BpMADS3 基因仅在花器官中 强烈表达,在茎、叶组织中不表达。采用染色体步移法克隆BpMADS3 基因上游启动子,获得1 426 bp 长度启动子序 列,构建BpMADS3 基因启动子驱动GUS 基因植物表达载体,在拟南芥转基因植株中GUS 染色表明,GUS 活性集中 在萼片和心皮中。在拟南芥ap1 突变体中过量表达BpMADS3 基因,能恢复拟南芥ap1 突变体花器官的正常发育。 BpMADS3 基因转化烟草发现,转基因植株出现早花表型,且转基因烟草植株中相关开花基因表达水平均上调。   相似文献   

10.
  目的  花器官发育是影响花观赏价值的重要因素,AP1类基因调控植物花器官的形成。研究菊科Asteraceae欧洲千里光Senecio vulgaris的SvAP1基因在花器官形成中的重要作用,旨在探究菊科复杂花序结构产生的调控机制。  方法  以欧洲千里光为材料克隆获得了SvAP1基因,通过多序列比对、构建系统进化树、实时荧光定量PCR (qRT-PCR)反应、构建超表达载体、组织学染色观察等方法与技术,对SvAP1基因进行功能预测与分析。  结果  SvAP1基因开放阅读框长度为705 bp,编码234个氨基酸。多序列比对与系统进化分析显示:SvAP1基因属于MADS-box基因AP1类亚家族,C末端具有paleoAP1保守基序(motif)。欧洲千里光组织特异性表达分析表明:SvAP1基因在营养器官和花序中都有表达。转基因龙葵Solanum nigrum的形态学观察和石蜡切片技术分析显示:与野生型龙葵相比,转基因龙葵雌蕊发育异常,表现为子房膨大且雌蕊状组织增多。  结论  欧洲千里光SvAP1基因在龙葵中的超表达影响雌蕊发育,与ABC模型中A类基因超表达对植物花器官发育造成的影响存在差异,即转基因龙葵雄蕊无明显变化且雌蕊未转变为萼片状或叶片状器官。这可能与欧洲千里光花器官调节机制和花序结构的复杂性有关。由此可知,欧洲千里光SvAP1基因可能作为花器官特征基因在花器官形成中具有重要作用。图6表1参35  相似文献   

11.
The study was designed to elucidate the changes in the endogenous hormones of stem apices in tomatoes and the function of correlative endogenous hormones in tomatoes during floral bud differentiation stages. The tomato parents were crossed and reverse crossed by using two inbred lines of multi-locule (MLK1) and few-locule (FL1) with significant difference, and the relationship between endogenous hormones GA3, IAA, and ABA levels and ovary locule numbers of parents and progeny during floral bud differentiation initial stage, floral bud differentiation stage, sepal petal formation stage, carpel formation initial stage, and ovary locule complete formation stage was studied. GA3 levels in P1, P2, F1, and RF1 were consistent with locule numbers, and IAA and ABA levels were reverse to ovary locule numbers during the key stage. The correlation showed that, during sepal petal formation stage, the ovary locule numbers were positively correlated with GA3, GA3/IAA, and GA3/ABA, and were negatively correlated with IAA and ABA. It was speculated that increasing GA3 levels or decreasing IAA and ABA levels of stem apices in tomato might be able to enhance ovary locule numbers. The sepal petal formation stage was an important stage which regulated endogenous hormones in the ovary locule formation.  相似文献   

12.
【目的】克隆紫薇Lagerstroemia indica LiCMB1基因并分析其在紫薇花芽分化的不同时期及不同组织和器官中的表达,探讨LiCMB1基因的表达特性。【方法】利用简单克隆技术从紫薇中克隆得到LiCMB1的基因序列,通过ExPasy等在线工具对其进行蛋白质理化性质分析,使用MEGA 6.0构建系统进化树,结合紫薇花芽分化的表型观察和石蜡切片,采用实时荧光定量PCR分析花芽分化的不同时期及不同组织和器官中LiCMB1基因的表达。【结果】LiCMB1基因属于MADS-box家族SEP类基因,除了具有典型的MADS_MEF2_like和K-box结构域外,靠近C端处还含有一个SEP motif保守基序;LiCMB1在紫薇花芽分化过程中呈现先上升后下降的表达趋势,在各组织和器官中均有表达,表达量从高到低依次为雌蕊、萼片、芽、长雄蕊、短雄蕊、花瓣、叶、茎、根,说明LiCMB1可能对紫薇的花芽分化起到重要作用,且参与调控花器官发育。【结论】LiCMB1基因属于MADS-box家族的SEP基因,在紫薇花芽分化的前期发挥重要作用,尤其是在花萼分化期表达量最高,组织特异性分析表明该基因很可能...  相似文献   

13.
    为探讨番茄子房心室形成过程中相关体内代谢物质的作用,应用番茄多心室自交系(MLK1)和少心室自交系(FL1)进行正反交,研究亲本及正反交F1代(F1、RF1)花芽分化初期、花芽分化期、萼片花瓣形成期、心皮形成初期、子房心室完全形成期5个时期幼苗茎尖体内代谢物质果糖、葡萄糖、蔗糖、淀粉、可溶性蛋白、DNA、RNA含量的变化及其与子房心室形成的关系.结果表明,番茄两亲本在花芽分化5个时期的果糖、葡萄糖、蔗糖、淀粉、可溶性蛋白、DNA舍量均是多心室亲本高于少心室亲本;RNA含量则是少心室亲本高于多心室亲本;正反交F1和RF1在幼苗花芽分化各时期茎尖果糖、葡萄糖、可溶性蛋白、DNA、RNA含量均介于多心室和少心室亲本之间;这些结果与心室数的变化相一致.进一步分析番茄花芽分化5个时期幼苗茎尖相关代谢物质含量与子房心室数的相关关系表明.番茄子房心室数与萼片花瓣形成期葡萄糖、蔗糖、淀粉、可溶性蛋白含量呈极显著正相关,与RNA含量呈极显著负相关,而与果糖、DNA含量呈显著正相关;这一结果预示着番茄子房·心室形成可能是果糖、葡萄糖、蔗糖、淀粉、可溶性蛋白、DNA、RNA等体内代谢物质之间相互作用的结果,同时也预示着萼片花瓣形成期可能是番茄子房心室形成的相关体内代谢物质调控的关键时期.  相似文献   

14.
MADS—box基因家族在决定花分生组织特性和花器官发育过程中起着重要的作用。以绿竹Bambusaoldhamii开花试管苗花芽为植物材料,采用cDNA末端快速扩增技术(rapid amplification of cDNAends,RACE)技术,获得了1条MADS—box基因家族的基因,命名为BoAP3。序列分析结果表明:BoAP3开放阅读框(open reading frame,ORF)长度为654bp,编码218个氨基酸,具有典型的植物MADS—box蛋白结构,其编码肽链包含了MADS区、K区、I区和C区。B胡丹与小麦Triticum aestivum,水稻Oryzasatva等AP3-like同源基因所编码的氨基酸同源性达到80%以上。定量聚合酶链式反应(PCR)结果表明:BoAP3基因在开花试管苗的花芽中表达量是不开花试管苗营养芽表达量的8.1倍,表明该基因可能参与了花器官的发育。  相似文献   

15.
【目的】小穗是禾本科植物特有的花器官。在水稻中,小穗作为花序的基本单位和独有结构,对水稻的产量和品质具有重要影响。因此,研究水稻小穗和花器官的发育,为水稻产量和品质的形成提供依据。【方法】使用甲基磺酸乙酯(ethyl methane sulfonate,EMS)诱变籼稻保持系西农1B,获得2个具有相似突变表型的水稻等位突变体polarity defect of lateral organs 2-1和polarity defect of lateral organs 2-2(pdl2-1和pdl2-2)。由于二者表型相似,选取pdl2-1(命名为pdl2)为材料,通过显微观察和石蜡切片技术分析其小穗突变表型;通过农艺性状考察分析小穗外稃突变对水稻产量的影响;通过图位克隆技术验证PDL2的功能;运用原位杂交技术及实时荧光定量PCR(RT-qPCR)技术分析PDL2的表达模式。【结果】表型分析结果表明,与野生型相比,pdl2突变体外稃明显变窄,不能与内稃紧密钩合,导致小穗开裂,内轮花器官部分裸露在外,但其雄蕊、雌蕊和浆片的形态和数量均表现正常。进一步的石蜡切片结果表明,突变体外稃硅化细胞和泡...  相似文献   

16.
洋葱花器官B类MADS-box基因AcPI的克隆及表达分析   总被引:1,自引:0,他引:1  
【目的】克隆洋葱花器官B类PI/GLO家族MADS-box基因,分析其序列特征及时空表达模式,为探讨其在洋葱花发育过程中的分子遗传机制奠定基础。【方法】以洋葱花蕾总RNA为模板,根据同源克隆策略设计简并引物,利用RT-PCR结合RACE技术,获得AcPI的全长cDNA序列。用生物信息学方法对其基因序列特征进行分析;利用RT-PCR和Real-time PCR分析AcPI在花蕾整个生长过程中的时空表达模式。【结果】克隆获得洋葱AcPI基因(GenBank登录号:JX679083)的cDNA全长931 bp,包含615 bp的完整开放阅读框,编码205个氨基酸。蛋白分析表明,AcPI蛋白具有植物MADS-box蛋白典型的MADS和K结构域;与水仙的NTPI、风信子的HoMADS2有78%、75%的相似性,与金鱼草的GLO也有52%的相似性。系统进化树分析表明,AcPI属于B类MADS-box蛋白家族的PI亚家族。RT-PCR表达分析表明,AcPI只在生殖器官花蕾中表达,但主要在花的第一、二、三轮花器官中表达,而在营养组织根、茎和叶中不表达。Real-time PCR进一步分析表明,AcPI在花芽整个生长过程中,在心皮中微弱表达,但表达丰度呈递增趋势;而在外轮被片、内轮被片和雄蕊中强烈表达,其表达丰度除了在外轮被片中呈先增后减的趋势外,在内轮被片和雄蕊中都呈递增趋势。【结论】AcPI在洋葱第一轮花器官中的表达支持了van Tunen提出的修正的ABC模型;但AcPI在洋葱第四轮花器官中也有表达,这表明AcPI除了调控外轮被片、内轮被片和雄蕊发育外,还可能在心皮的形成发育过程中起着重要作用。  相似文献   

17.
【目的】利用表达模式分析、转基因过表达和细胞学观察等策略,解析TaCYP78A5调控花器官大小的功能和机制,为作物遗传改良提供基因资源和理论基础。【方法】根据EnsemblPlants基因组数据库中不同物种CYP78A家族成员的序列信息,对小麦TaCYP78A5和其他物种中的同源基因进行序列比对和进化分析;利用生物信息学分析小麦TaCYP78A5的基因和蛋白结构,以及不同器官的表达模式;通过在拟南芥中组成型过表达和生殖器官局部特异性过表达TaCYP78A5的策略,明确TaCYP78A5具有调控花器官大小的功能;利用显微镜观察不同转基因拟南芥花器官的细胞学特征,解析TaCYP78A5调控花器官大小的细胞学机制;利用小麦转基因过表达策略,明确TaCYP78A5调控小麦穗部大小等其他穗部性状的功能;利用323份小麦品种的单倍型数据与穗部表型数据进行关联分析,探析不同小麦品种TaCYP78A5表达量的高低对穗部大小等其他穗部性状的影响。【结果】小麦TaCYP78A5与拟南芥AtCYP78A5的基因和蛋白序列相似性较低,但基因和蛋白结构相似性较高。小麦TaCYP78A5和拟南芥AtCYP78A5...  相似文献   

18.
【目的】克隆‘鲁星’桃(Prunus persica var.nectarina‘Luxing’)中参与调控营养和生殖生长的MADS-box(Pp MADS)基因,研究其在不同组织器官中的表达特性,为解析该基因在花发育和果实发育及成熟过程中的功能奠定基础。【方法】利用同源比对和RT-PCR技术,克隆获得‘鲁星’桃中10个Pp MADS全长c DNA序列,并进行生物信息学相关分析;采用RT-PCR技术检测PpMADSs在茎、叶、萼片、子房、雄蕊、花瓣等组织以及花发育7个阶段和果实发育5个阶段的表达特性。【结果】测序结果显示,获得10个PpMADSs(Pp MADS11、12、19、20、21、22、28、29、30和31;Gen Bank登录号分别为KU559577、KU559578、KU559585、KU559586、KU559587、KU559588、KU559594、KU559595、KU559596和KU559597),其开放阅读框(open reading frame,ORF)分别为522、279、1 065、828、723、600、636、534、750和480 bp。进化分析表明,PpMADS11属于AP3亚组,PpMADS12是AGL17亚组,Pp MADS19属于MIKC*组,Pp MADS20、21和22同被分为Mα组,PpMADS28、29、30和31同属于Mγ组。亚细胞定位预测结果显示,10个PpMADS蛋白均定位于细胞核中。启动子分析显示,PpMADSs启动子区域含有多个顺式作用元件,包括光响应元件、防御及逆境响应元件、干旱诱导的MYB结合位点、热激响应元件、低温响应元件、真菌效应子响应元件、伤害响应元件、厌氧响应元件、GA响应元件、Auxin响应元件、Me JA响应元件、ABA响应元件、SA响应元件和乙烯响应元件。半定量RT-PCR和q RT-PCR结果显示,PpMADS11在茎、叶、萼片、子房、雄蕊、花瓣、花发育和果实发育中表达;PpMADS12在茎、叶、萼片、子房、雄蕊、花瓣和花发育中表达;Pp MADS19在萼片、雄蕊、花瓣和花发育中(苗期除外)表达;Mα组和Mγ组所有成员在茎、叶、萼片、子房、雄蕊、花瓣和花发育中均有表达,部分成员在果实发育中表达。【结论】10个PpMADS在‘鲁星’桃的营养生长以及花和果实发育过程中可能具有重要的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号