首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonaqueous capillary electrophoresis was evaluated for its potential to separate peptides in methanolic background electrolytes in comparison to aqueous-methanol (50% v/v) and water. Isomeric aspartyl dipeptides and Leu- and Met-enkephalin served as model compounds. pK(a) values were determined in the three solvent systems based on the apparent pH scale and in the case of methanol additionally based on the conventional pH scale. Changing from water to methanol led to an increase of the ionization constants describing the dissociation equilibria of the carboxyl group and the amino group, respectively. The pK(a) shift was more pronounced for the carboxylic acid function leading to a compression of the mobility-pH curve. As reported for aqueous buffers, efficient separations of the peptides were achieved in methanolic background electrolytes including the resolution of the diastereomers of the isomeric alpha- and beta-aspartyl dipeptides. In contrast to aqueous buffers, the separation of Leu- and Met-enkephalin could also be obtained in buffers in methanol at high pH.  相似文献   

2.
The present study uses an unique capillary electrophoresis (CE) approach, that we have termed ion-interaction capillary zone electrophoresis (II-CZE), for the separation of diastereomeric peptide pairs where a single site in the centre of the non-polar face of an 18-residue amphipathic alpha-helical peptide is substituted by the 19 L- or D-amino acids. Through the addition of perfluorinated acids at very high concentrations (up to 400 mM), such concentration levels not having been used previously in chromatography or CE, to the background electrolyte (pH 2.0), we have been able to achieve baseline resolution of all 19 diastereomeric peptide pairs with an uncoated capillary. Since each diastereomeric peptide pair has the same sequence, identical mass-to-charge ratio and identical intrinsic hydrophobicity, such a separation by CZE has previously been considered theoretically impossible. Excellent resolution was achieved due to maximum advantage being taken of even subtle disruption of peptide structure/conformation (due to the presence of D-amino acids) of the non-polar face of the amphipathic alpha-helix and its interaction with the hydrophobic anionic ion-pairing reagents. In addition, due to the excellent resolution of diastereomeric peptide pairs by this novel CZE approach, we have also been able to separate a mixture of these closely-related alpha-helical peptides.  相似文献   

3.
CZE allows to measure the acidic dissociation constant (pKa) of many drug substances. However, determining the EOF intensity may be time-consuming, especially at a low pH. In order to overcome this drawback, a dynamic coating procedure of the capillary was carried out to increase microEOF, and thus to reduce the analysis time. In addition, this coating procedure enhanced migration time stability. The effective mobilities of 15 compounds were measured at different pH, producing pK'a values dependent on BGE ionic strength. The latter values were corrected with the activity coefficient to obtain a "true" pKa value. The 15 investigated compounds were (i) five acids: namely, salicylic acid, benzoic acid, ketoprofen, phenobarbital, and phenol, (ii) four bases: lidocaine, propafenone, propranolol, and quinine, (iii), five ampholytes: sulfanilamide, sulfabenzamide, sulfadimethoxine, sulfadoxine, and sulfisoxazole, and (iv) one zwitterion: cetirizine. The range of determined pKa values was between 1.2 and 11.2, and close to the pKa values available from the literature.  相似文献   

4.
The present article describes a capillary zone electrophoresis method which relies on a multilayered water-alkali solvent stacking with online ionization to enhance detection of mannose, arabinose, and their oligosaccharides, which are used as the migration profile standards but are also the distinctive structural components of lipoarabinomannan. Lipoarabinomannan is detected in patients having tuberculosis. The capillary electrophoresis method with ionization of the whole saccharides without degradation in alkaline solution inside the capillary is based on the structural deprotonation of the molecules under ultrahigh pH conditions. The validation of the capillary electrophoresis parameters revealed that the 15-fold electrolyte–water-injection plug allowed detection of one-third lower concentrations than detected without online concentration. For the first time, the better detectability was seen especially for highly polymerized, but otherwise poorly ionized, arabinooctaose. The applicability of the method for detecting whole large biological saccharide complexes was confirmed by the glycolipid lipoarabinomannan. For the first time also, the migration of the indestructible lipoarabinomannan was detected together with oligosaccharides used representing the capping units, namely mannose, mannobiose, and mannotriose. The myo-inositol-phosphate-lipid unit was seen to migrate separately from the arabinomannan, since it was hydrolyzed from one lipoarabinomannan product under alkaline conditions in capillary electrophoresis.  相似文献   

5.
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump‐free negative pressure sampling device was used for rapid bias‐free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump‐free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.  相似文献   

6.
A simple capillary zone electrophoresis (CZE) method has been developed for analyzing seven nonsteroidal anti-inflammatory drugs (NSAIDs)—sulindac (SU), ketoprofen (KE), indomethacin (IN), piroxicam (PI), nimesulide (NI), ibuprofen (IB), and naproxen (NA). The separation was run using borate buffer (60 mmol L–1, pH 8.5) containing 13% (v/v) methanol at 20 kV, and detected at 200 nm. Several conditions were studied, including concentration and pH of borate buffer, methanol percentage, and separation voltage. In method validation, the calibration plots were linear over the range 40.0–500.0 mol L–1. In intra-day and inter-day analysis, relative standard deviations (RSD) and relative errors (RE) were all less than 5%. The limits of detection were 10 mol L–1 for SU, IN, PI, and 20 mol L–1 for KE, NI, IB, NA (S/N = 3, sampling 6 s by pressure). All recoveries were greater than 95%. This method was applied to the quality control of six NSAIDs in pharmaceuticals using NI as internal standard (IS). The assay results were within the labeled amount required by USP 25.  相似文献   

7.
A rapid and sensitive method for the analysis of three catecholamines by capillary electrophoresis(CE)with directchemiluminescence(CL)detection is described.The detection limits(S/N=3)were 1.3*10-8g/mL for isoprenaline,1.0*10-8g/mL for epinephrine and 2.8*10-8g/mL for dopamine.The proposed method was successfully applied to theanalysis of catecholamines in urine samples of cigarette smokers and nonsmokers.The results showed that there is a close relationbetween the release of dopamine in human body fluids and cigarette smoking/nonsmoking.  相似文献   

8.
An electrophoretic method for the simultaneous separation and determination of cationic and anionic surfactants based on double electrokinetic injection from the two ends of the capillary is proposed here. Nonaqueous capillary electrophoresis (NACE) with methanol as solvent was used to reduce the electroosmotic flow so that under these conditions the analytes migrate toward the corresponding electrode. The optimization step was the key to solve the problems associated with surfactants analysis (namely, adsorption on the capillary wall, micelle formation, and those issues related to the separation of homologous compounds). Good results were obtained with the proposed method both for the analysis of both spiked and natural samples, thus demonstrating the applicability of the proposed method for routine analysis. Finally, a comparison between the proposed method and two methods for independent analysis of cationic and anionic surfactants was made. The results showed that the precision (between 1.90 and 4.10% for repeatability and 7.43 and 8.98% for within-laboratory reproducibility, both expressed as relative standard deviation) and sensitivity (limits of detection and quantification between 0.52 and 1.88 microg/mL and between 1.73 and 6.20 microg/mL, respectively) are not affected by the CE mode. The resolution was similar to or better than that of the comparison methods and the analysis time was considerably shortened as both types of compounds were determined in a single run in only 9 min.  相似文献   

9.
《Electrophoresis》2017,38(13-14):1724-1729
We have recently demonstrated the separation of neutral and water‐insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers.  相似文献   

10.
Capillary zone electrophoresis (CZE) was employed in polyimide composition analysis. Polymide was decomposed to its corresponding aromatic diamine and aromatic acid monomers by an alkali fusion reaction. Sample treatment is much simpler than published methods, and electropherograms show a good separation of decomposed products under the proper conditions.  相似文献   

11.
Summary Nonaqueous capillary electrophoresis (NACE) has been used to achieve rapid separations of basic drugs. A high electric field was obtained by using short capillaries. Baseline separations of basic drugs, including amphetamines, tropane alkaloids and local anesthetics, were achieved in 1 min by selection of the appropriate organic solvent and electrolyte composition. Thus, high-throughput analyses can be performed. Peak efficiency up to 9154 theoretical plates s−1 was achieved in a separation performed at 923V cm−1. No discernible loss in resolution was observed when a conventional capillary (64.5cm) was replaced by a short (32.5 cm) capillary.  相似文献   

12.
Sertindole (1-[2-[4-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl]ethyl]-2-imidazolidinone), an atypical antipsychotic drug, was separated by capillary electrophoresis from its two main metabolites norsertindole and dehydrosertindole. The low solubility of the analytes in water (octanol-water partition coefficient is about 10(5)) is overcome by the use of methanol (MeOH) and acetonitrile (ACN) as solvents for the background electrolyte (BGE). Mobilities were measured in BGEs with defined pH in a broad range. It was found that in MeOH the mobility of the analytes is mainly governed by acid-base equilibria, whereas in ACN other reactions like ion pairing and homo-conjugation play a pronounced role and lead to a complex pattern of the mobility as function of the pH. However, separation can be obtained in less than 10 min in both solvent systems.  相似文献   

13.
Zhu HD  Lü WJ  Li HH  Ma YH  Hu SQ  Chen HL  Chen XG 《Journal of chromatography. A》2011,1218(34):5867-5871
This paper for the first time describes the development of micelle to solvent stacking (MSS) to nonaqueous capillary electrophoresis (NACE). In this proposed MSS-NACE, sodium dodecyl sulfate (SDS) micelles transport, release, and focus analytes from the sample solution to the running buffer using methanol as their solvent. After the focusing step, the focused analytes were separated via NACE. The focusing mechanism and influencing factors were discussed using berberine (BBR) and jatrorrhizine (JTZ) as model compounds. And the optimum condition was obtained as following: 50 mM ammonium acetate, 6% (v/v) acetic acid and 10 mM SDS in redistilled water as sample matrix, 50 mM ammonium acetate and 6% (v/v) acetic acid in pure methanol as the running buffer, -20 kV focusing voltage with 30 min focusing time. Under these conditions, this method afforded limits of detection (S/N=3) of 0.002 μg/mL and 0.003 μg/mL for BBR and JTZ, respectively. In contrast to conventional NACE, the concentration sensitivity was improved 128-153-fold.  相似文献   

14.
Nonaqueous capillary electrophoretic separation of a group of flavonoids (quercetin, myricetin, catechin, epicatechin) and resveratrol in wine was investigated in methanol at high pH. Malonate background electrolyte (pH* 13.5, ionic strength I = 14.2 mmol/L) provided highly repeatable separations of the analytes. Tests of untreated and coated (poly(glycidylmethacrylate-co-N-vinylpyrrolidone)) capillaries showed the analysis to be faster (6.5 min vs. 25 min) and the repeatability better in the coated capillaries. The coating procedure was simple and highly repeatable and the coating was stable during 40-45 runs. Determination of the last migrating peaks (epicatechin, resveratrol and catechin) was achieved merely by evaporating the wine samples and reconstituting the residue in methanol. For determination of the first migrating peaks (quercetin and myricetin) the samples were submitted to solid-phase extraction in C8 cartridges.  相似文献   

15.
Peng ZL  Qu F  Song G  Lin JM 《Electrophoresis》2005,26(17):3333-3340
A simple and rapid nonaqueous capillary electrophoresis method for simultaneous separation of four kinds of mercury species, namely inorganic mercury, methylmercury, ethylmercury, and phenylmercury, is reported. The effective mobilities of organomercury in aqueous and nonaqueous electrolytes were compared. Imidazole was confirmed not only as a co-ion for the separation but also as an online complexing reagent for mercury species. The optimum conditions for separation were achieved by using methanol solvent containing 0.15 M acetic acid and 15 mM imidazole as electrolyte. The sensitive detection of mercury species was accomplished at 191 nm.  相似文献   

16.
高效毛细管区带电泳法快速测定尿液中的肌酐   总被引:1,自引:0,他引:1  
建立了一种快速测定尿中肌酐浓度的高效毛细管电泳方法。利用非涂层石英毛细管(64.5 cm×50μm i.d),以pH 2.5,0.1 mmol/L H3PO4作为电泳缓冲液,检测波长191 nm,用0.05 Pa压力进样4 s,在电压16 kV快速分离尿液中的肌酐,采用外标法定量。肌酐的迁移时间约为5.5 min,肌酐浓度在34.5~8840μmol/L范围内呈良好的线性(r2=0.999)。平均日内精密度为2.5%,日间精密度为3.0%。回收率94.1%~99.0%。与全自动生化分析仪碱性苦味酸速率法相比有良好的相关性(r=0.990,n=56)。高效毛细管电泳法测定尿肌酐可应用于临床样品的检测。  相似文献   

17.
The behaviour of four biologically relevant selenium compounds (Se(VI), Se(IV), selenomethionine and selenocystine) in capillary zone electrophoresis (CZE) was investigated. Parameters which affect the separation, detection and sample introduction were investigated to improve the sensitivity of the analysis. Short-term repeatability was evaluated and detection limits were found to be in the g·l–1 range.  相似文献   

18.
非水毛细管电泳应用新进展   总被引:1,自引:0,他引:1  
腾红  袁柏青  由天艳 《分析化学》2010,38(11):1670-1677
非水毛细管电泳(NACE)已经被广泛用于药物、环境和生物等领域。由于有机溶剂种类繁多,它们的物理和化学性质各不相同,因此可以针对被分析物的性质及检测方法的不同,选择不同的有机溶剂用于NACE分离,从而拓宽了毛细管区带电泳(CZE)的应用范围。本综述根据近年来NACE在分析领域的应用,对NACE的优势、检测方法、富集方式以及在实际样品中的应用等方面进行了总结,并对其今后的发展进行了展望。  相似文献   

19.
Lipoic acid is a naturally occurring compound which is being widely investigated for its therapeutic effects in the treatment or prevention of a variety of diseases associated with oxidative injury, particularly diabetes. The diversity of therapeutic applications of lipoic acid requires an appropriate formulation to control its bioavailability, site-targeting delivery and to overcome its inherent chemical instability. In this regard, cyclodextrins (CDs) are ideally suitable due to their well-documented ability to include in their cavity proper guest molecules and protect them from physical or chemical damages. Lipoic acid forms 1:1 inclusion complexes with betaCD as shown in a previous report of an extended investigation that also indicated the suitability of capillary zone electrophoresis (CZE) for the study of such host-guest interactions. In view of these possible applications, we extended the CZE analysis to determine the strength of binding, in a pH 9 phosphate buffer, of lipoic acid with other CD derivatives such as alphaCD, gammaCD and the alkylated derivatives of betaCD, namely (2-hydroxypropyl)-beta-CD (HPbetaCD), and heptakis(2,3,6-tri-O-methyl)-beta-CD (TMbetaCD). Once established that the easily available betaCD is the most suitable receptor for lipoic acid, we set up and here describe a simple and reliable procedure for the quantitative determination of lipoic acid in commercial dietary supplement tablets containing also other active substances and excipients.  相似文献   

20.
Summary A simple and rapid capillary zone electrophoretic method with UV detection has been developed for determination of tosufloxacin and trovafloxacin. The separation was performed in fused-silica capillaries (57 cm length × 75μm i.d.); the running buffer was 35mm borate + 35mm phosphate buffer solution, pH 8.6, containing 6% (v/v) acetonitrile. The applied potential was 15 kV, the temperature 30°C, and detection was at 262 nm. Piromidic acid was used as the internal standard. Response was linearly dependent on concentration in the range 1.0–120.0 μg mL−1 and the detection limit was 0.2 μg mL−1 for both compounds. The analysis was highly reproducible (RSD between 3.41 and 1.25%). The method was applied to the determination of tosufloxacin and trovafloxacin in human and rat urine. The method was validated by using HPLC as a reference method. Recovery was between 96.8 and 102%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号