首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ubiquitin‐like protein SUMO is transferred through a core E1–E2 cascade composed of the SUMO‐activating enzyme (SAE) and Ubc9 to modify cellular proteins and transmit important biological signals. SAE primarily recognizes the C‐terminal tail of SUMO and catalyzes ATP condensation with the SUMO C‐terminal carboxylate to activate its transfer through the cascade. Here, we used phage display to show that a broad profile of SUMO C‐terminal sequences could be activated by SAE. Based on this, we developed heptamer peptides that could 1) form thioester conjugates with SAE, 2) be transferred from SAE to Ubc9, and 3) be further transferred to the SUMOylation target protein RanGAP1. As these peptides recapitulate the action of SUMO in protein modification, we refer to them as “SUMO‐mimicking peptides”. We found that, once the peptides were conjugated to SAE and Ubc9, they blocked full‐length SUMO from entering the cascade. These peptides can thus function as mechanism‐based inhibitors of the protein SUMOylation reaction.  相似文献   

3.
Serotonin 1A receptors (5-HT1ARs) are implicated in the control of mood, cognition, and memory and in various neuropsychiatric disorders such as depression and anxiety. As such, understanding the regulation of 5-HT1ARs will inform the development of better treatment approaches. We previously demonstrated 5-HT1ARs are SUMOylated by SUMO1 in the rat brain. Agonist stimulation increased SUMOylation and was further enhanced when combined with 17β-estradiol-3-benzoate (EB), which are treatments that cause the transient and prolonged desensitization of 5-HT1AR signaling, respectively. In the current study, we identified the protein inhibitor of activated STAT (PIAS)xα as the enzyme that facilitates SUMOylation, and SENP2 as the protein that catalyzes the deSUMOylation of 5-HT1ARs. We demonstrated that PIASxα significantly increased in the membrane fraction of rats co-treated with EB and an agonist, compared to either the EB-treated or vehicle-treated groups. The acute treatment with an agonist alone shifted the location of SENP2 from the membrane to the cytoplasmic fraction, but it has little effect on PIASxα. Hence, two separate mechanisms regulate SUMOylation and the activity of 5-HT1ARs by an agonist and EB. The effects of EB on 5-HT1AR SUMOylation and signaling may be related to the higher incidence of mood disorders in women during times with large fluctuations in estrogens. Targeting the SUMOylation of 5-HT1ARs could have important clinical relevance for the therapy for several neuropsychiatric disorders in which 5-HT1ARs are implicated.  相似文献   

4.
Ubiquitin and ubiquitin‐like (Ubl) modifiers such as SUMO are conjugated to substrate proteins by E1, E2, and E3 enzymes. In the presence of an E3 ligase, the E2~Ubl thioester intermediate becomes highly activated and is prone to chemical decomposition, thus making biochemical and structural studies difficult. Here we explored a stable chemical conjugate of the E2 enzyme from the SUMO pathway, Ubc9, with its modifier SUMO1 as a structural analogue of the Ubc9~SUMO1 thioester intermediate, by introducing a triazole linkage by biorthogonal click chemistry. The chemical conjugate proved stable against proteolytic cleavage, in contrast to a Ubc9–SUMO1 isopeptide analogue obtained by auto‐SUMOylation. Triazole‐linked Ubc9–SUMO1 bound specifically to the preassembled E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9, thus suggesting that it is a suitable thioester mimic. We anticipate interesting prospects for its use as a research tool to study protein complexes involving E2 and E3 enzymes.  相似文献   

5.
Posttranslational modifications provide Entamoeba histolytica proteins the timing and signaling to intervene during different processes, such as phagocytosis. However, SUMOylation has not been studied in E. histolytica yet. Here, we characterized the E. histolytica SUMO gene, its product (EhSUMO), and the relevance of SUMOylation in phagocytosis. Our results indicated that EhSUMO has an extended N-terminus that differentiates SUMO from ubiquitin. It also presents the GG residues at the C-terminus and the ΨKXE/D binding motif, both involved in target protein contact. Additionally, the E. histolytica genome possesses the enzymes belonging to the SUMOylation-deSUMOylation machinery. Confocal microscopy assays disclosed a remarkable EhSUMO membrane activity with convoluted and changing structures in trophozoites during erythrophagocytosis. SUMOylated proteins appeared in pseudopodia, phagocytic channels, and around the adhered and ingested erythrocytes. Docking analysis predicted interaction of EhSUMO with EhADH (an ALIX family protein), and immunoprecipitation and immunofluorescence assays revealed that the association increased during phagocytosis; whereas the EhVps32 (a protein of the ESCRT-III complex)-EhSUMO interaction appeared stronger since basal conditions. In EhSUMO knocked-down trophozoites, the bizarre membranous structures disappeared, and EhSUMO interaction with EhADH and EhVps32 diminished. Our results evidenced the presence of a SUMO gene in E. histolytica and the SUMOylation relevance during phagocytosis. This is supported by bioinformatics screening of many other proteins of E. histolytica involved in phagocytosis, which present putative SUMOylation sites and the ΨKXE/D binding motif.  相似文献   

6.
7.
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.  相似文献   

8.
9.
The post‐translational conjugation of the small ubiquitin‐like modifiers (SUMOs) to target proteins occurs through a complex machinery that involves sequential action of at least three enzymes. SUMOylation performs crucial regulatory functions in several cellular processes. The availability of well‐defined SUMO conjugates is necessary for untangling the mechanism of SUMOylation. However, assembly of homogeneous SUMO conjugates represents a challenge because of the multi‐step synthesis involved and the unwieldiness of the reconstituted biosynthetic systems. Here we describe a simple one‐step chemoenzymatic strategy for conjugating engineered SUMO (eSUMO) proteins to a prefabricated isopeptide‐linked SUMO target peptide. Notably, the eSUMOs were efficiently recognized by the enzymes of the SUMOylation machinery and the SUMO conjugates served as bona fide substrates for DeSUMOylating enzymes.  相似文献   

10.
Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its own replication and dissemination. Here, we show that S. aureus significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.  相似文献   

11.
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.  相似文献   

12.
Variants of NR5A1 are often found in individuals with 46,XY disorders of sex development (DSD) and manifest with a very broad spectrum of clinical characteristics and variable sex hormone levels. Such complex phenotypic expression can be due to the inheritance of additional genetic hits in DSD-associated genes that modify sex determination, differentiation and organ function in patients with heterozygous NR5A1 variants. Here we describe the clinical, biochemical and genetic features of a series of seven patients harboring monoallelic variants in the NR5A1 gene. We tested the transactivation activity of novel NR5A1 variants. We additionally included six of these patients in a targeted diagnostic gene panel for DSD and identified a second genetic hit in known DSD-causing genes STAR, AMH and ZFPM2/FOG2 in three individuals. Our study increases the number of NR5A1 variants related to 46,XY DSD and supports the hypothesis that a digenic mode of inheritance may contribute towards the broad spectrum of phenotypes observed in individuals with a heterozygous NR5A1 variation.  相似文献   

13.
14.
15.
16.
Post-translational modifications (PTMs) have been confirmed to be involved in multiple female reproductive events, but their role in physiological ovarian aging is far from elucidated. In this study, mice aged 3, 12 or 17 months (3M, 12M, 17M) were selected as physiological ovarian aging models. The expression of female reproductive function-related genes, the global profiles of PTMs, and the level of histone modifications and related regulatory enzymes were examined during physiological ovarian aging in the mice by quantitative real-time PCR and western blot, respectively. The results showed that the global protein expression of Kbhb (lysineβ-hydroxybutyryllysine), Khib (lysine 2-hydroxyisobutyryllysine), Kglu (lysineglutaryllysine), Kmal (lysinemalonyllysine), Ksucc (lysinesuccinyllysine), Kcr (lysinecrotonyllysine), Kbu (lysinebutyryllysine), Kpr (lysinepropionyllysine), SUMO1 (SUMO1 modification), ub (ubiquitination), P-Typ (phosphorylation), and 3-nitro-Tyr (nitro-tyrosine) increased significantly as mice aged. Moreover, the modification level of Kme2 (lysinedi-methyllysine) and Kac (lysineacetyllysine) was the highest in the 3M mice and the lowest in 12M mice. In addition, only trimethylation of histone lysine was up-regulated progressively and significantly with increasing age (p < 0.001), H4 ubiquitination was obviously higher in the 12M and 17M mice than 3M (p < 0.001), whereas the modification of Kpr (lysinepropionylation) and O-GlcNA in 17M was significantly decreased compared with the level in 3M mice (p < 0.05, p < 0.01). Furthermore, the expression levels of the TIP60, P300, PRDM9, KMT5B, and KMT5C genes encoding PTM regulators were up-regulated in 17M compared to 3M female mice (p < 0.05). These findings indicate that altered related regulatory enzymes and PTMs are associated with physiological ovarian aging in mice, which is expected to provide useful insights for the delay of ovarian aging and the diagnosis and treatment of female infertility.  相似文献   

17.
18.
Activating molecule in Beclin-1-regulated autophagy (AMBRA1), a negative regulator of tumorigenesis, is a substrate receptor of the ubiquitin conjugation system. ALDH1B1, an aldehyde dehydrogenase, is a cancer stem cell (CSC) marker that is required for carcinogenesis via upregulation of the β-catenin pathway. Although accumulating evidence suggests a role for ubiquitination in the regulation of CSC markers, the ubiquitination-mediated regulation of ALDH1B1 has not been unraveled. While proteome analysis has suggested that AMBRA1 and ALDH1B1 can interact, their interaction has not been validated. Here, we show that AMBRA1 is a negative regulator of ALDH1B1. The expression of ALDH1B1-regulated genes, including PTEN, CTNNB1 (β-catenin), and CSC-related β-catenin target genes, is inversely regulated by AMBRA1, suggesting a negative regulatory role of AMBRA1 in the expression of ALDH1B1-regulated genes. We found that the K27- and K33-linked ubiquitination of ALDH1B1 is mediated via the cooperation of AMBRA1 with other E3 ligases, such as TRAF6. Importantly, ubiquitination site mapping revealed that K506, K511, and K515 are important for the K27-linked ubiquitination of ALDH1B1, while K33-linked ubiquitination occurs at K506. A ubiquitination-defective mutant of ALDH1B1 increased the self-association ability of ALDH1B1, suggesting a negative correlation between the ubiquitination and self-association of ALDH1B1. Together, our findings indicate that ALDH1B1 is negatively regulated by AMBRA1-mediated noncanonical ubiquitination.  相似文献   

19.
Ubiquitin (Ub) and its related small Ub like modifier (SUMO) are among the most influential protein post-translational modifications in eukaryotes. Unfortunately, visualizing these modifications in live cells is a challenging task. Chemical protein synthesis offers great opportunities in studying and further understanding Ub and SUMO biology. Nevertheless, the low cell permeability of proteins limits these studies mainly for in vitro applications. Here, we introduce a multiplexed protein cell delivery approach, termed MBL (multiplexed bead loading), for simultaneous loading of up to four differentially labeled proteins with organic fluorophores. We applied MBL to visualize ubiquitination and SUMOylation events in live and untransfected cells without fluorescent protein tags or perturbation to their endogenous levels. Our study reveals unprecedented involvements of Ub and SUMO2 in lysosomes depending on conjugation states. We envision that this approach will improve our understanding of dynamic cellular processes such as formation and disassembly of membraneless organelles.  相似文献   

20.
Aminoacyl‐tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl‐tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic‐code‐expansion strategy to site‐specifically incorporate N?‐acetyl‐l ‐lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5‐related N‐acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl‐CoA or acetyl‐phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号