首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach.  相似文献   

2.
3.
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this “small sample” regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object.  相似文献   

4.
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function.  相似文献   

5.
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman’s outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance.  相似文献   

6.
Sparse representation has been widely studied as a part-based data representation method and applied in many scientific and engineering fields, such as bioinformatics and medical imaging. It seeks to represent a data sample as a sparse linear combination of some basic items in a dictionary. Gao et al. (2013) recently proposed Laplacian sparse coding by regularizing the sparse codes with an affinity graph. However, due to the noisy features and nonlinear distribution of the data samples, the affinity graph constructed directly from the original feature space is not necessarily a reliable reflection of the intrinsic manifold of the data samples. To overcome this problem, we integrate feature selection and multiple kernel learning into the sparse coding on the manifold. To this end, unified objectives are defined for feature selection, multiple kernel learning, sparse coding, and graph regularization. By optimizing the objective functions iteratively, we develop novel data representation algorithms with feature selection and multiple kernel learning respectively. Experimental results on two challenging tasks, N-linked glycosylation prediction and mammogram retrieval, demonstrate that the proposed algorithms outperform the traditional sparse coding methods.  相似文献   

7.
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.  相似文献   

8.
Some multiple kernel learning (MKL) models are usually solved by utilizing the alternating optimization method where one alternately solves SVMs in the dual and updates kernel weights. Since the dual and primal optimization can achieve the same aim, it is valuable in exploring how to perform Lp norm MKL in the primal. In this paper, we propose an Lp norm multiple kernel learning algorithm in the primal where we resort to the alternating optimization method: one cycle for solving SVMs in the primal by using the preconditioned conjugate gradient method and other cycle for learning the kernel weights. It is interesting to note that the kernel weights in our method can obtain analytical solutions. Most importantly, the proposed method is well suited for the manifold regularization framework in the primal since solving LapSVMs in the primal is much more effective than solving LapSVMs in the dual. In addition, we also carry out theoretical analysis for multiple kernel learning in the primal in terms of the empirical Rademacher complexity. It is found that optimizing the empirical Rademacher complexity may obtain a type of kernel weights. The experiments on some datasets are carried out to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

9.
For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.  相似文献   

10.

Nowadays, individuals spend significant time on online social networks and microblogging websites, consuming news and expressing their opinions and viewpoints on various topics. It is an excellent source of data for various data mining applications, such as sentiment analysis. Mining this type of data presents several challenges, including the posts’ short length and informal language. On the other hand, microblog posts contain a high degree of interdependence, which can help to improve sentiment classification based on text. This data can be represented as a graph, with nodes representing posts and edges representing the various relationships between them. By using recently developed deep learning models for graph structures, this approach enables efficient sentiment analysis of microblog posts. This paper utilizes graphs to represent microblog posts and their various relationships, such as user, friendship, hashtag, sentimental similarity, textual similarity, and common friends. It then employs graph neural networks to perform context-aware sentiment analysis. To make use of the knowledge contained in multiple graphs, we propose a stacking model that simultaneously employs multiple graph types. The findings demonstrate the relevance of sociological theories to the analysis of social media. Experimental results on HCR (a real-world Twitter sentiment analysis dataset), indicate that the proposed approach outperforms baselines and state-of-the-art models.

  相似文献   

11.
Extreme learning machine (ELM) is proposed for solving a single-layer feed-forward network (SLFN) with fast learning speed and has been confirmed to be effective and efficient for pattern classification and regression in different fields. ELM originally focuses on the supervised, semi-supervised, and unsupervised learning problems, but just in the single domain. To our best knowledge, ELM with cross-domain learning capability in subspace learning has not been exploited very well. Inspired by a cognitive-based extreme learning machine technique (Cognit Comput. 6:376–390, 1; Cognit Comput. 7:263–278, 2.), this paper proposes a unified subspace transfer framework called cross-domain extreme learning machine (CdELM), which aims at learning a common (shared) subspace across domains. Three merits of the proposed CdELM are included: (1) A cross-domain subspace shared by source and target domains is achieved based on domain adaptation; (2) ELM is well exploited in the cross-domain shared subspace learning framework, and a new perspective is brought for ELM theory in heterogeneous data analysis; (3) the proposed method is a subspace learning framework and can be combined with different classifiers in recognition phase, such as ELM, SVM, nearest neighbor, etc. Experiments on our electronic nose olfaction datasets demonstrate that the proposed CdELM method significantly outperforms other compared methods.  相似文献   

12.
We present here a simple technique that simplifies the construction of Bayesian treatments of a variety of sparse kernel learning algorithms. An incomplete Cholesky factorisation is employed to modify the dual parameter space, such that the Gaussian prior over the dual model parameters is whitened. The regularisation term then corresponds to the usual weight-decay regulariser, allowing the Bayesian analysis to proceed via the evidence framework of MacKay. There is in addition a useful by-product associated with the incomplete Cholesky factorisation algorithm, it also identifies a subset of the training data forming an approximate basis for the entire dataset in the kernel-induced feature space, resulting in a sparse model. Bayesian treatments of the kernel ridge regression (KRR) algorithm, with both constant and heteroscedastic (input dependent) variance structures, and kernel logistic regression (KLR) are provided as illustrative examples of the proposed method, which we hope will be more widely applicable.  相似文献   

13.
Unsupervised learning of feature hierarchies is often a good strategy to initialize deep architectures for supervised learning. Most existing deep learning methods build these feature hierarchies layer by layer in a greedy fashion using either auto-encoders or restricted Boltzmann machines. Both yield encoders which compute linear projections of input followed by a smooth thresholding function. In this work, we demonstrate that these encoders fail to find stable features when the required computation is in the exclusive-or class. To overcome this limitation, we propose a two-layer encoder which is less restricted in the type of features it can learn. The proposed encoder is regularized by an extension of previous work on contractive regularization. This proposed two-layer contractive encoder potentially poses a more difficult optimization problem, and we further propose to linearly transform hidden neurons of the encoder to make learning easier. We demonstrate the advantages of the two-layer encoders qualitatively on artificially constructed datasets as well as commonly used benchmark datasets. We also conduct experiments on a semi-supervised learning task and show the benefits of the proposed two-layer encoders trained with the linear transformation of perceptrons.  相似文献   

14.
This paper introduces an on-line semi-supervised learning algorithm formulated as a regularized kernel spectral clustering (KSC) approach. We consider the case where new data arrive sequentially but only a small fraction of it is labeled. The available labeled data act as prototypes and help to improve the performance of the algorithm to estimate the labels of the unlabeled data points. We adopt a recently proposed multi-class semi-supervised KSC based algorithm (MSS-KSC) and make it applicable for on-line data clustering. Given a few user-labeled data points the initial model is learned and then the class membership of the remaining data points in the current and subsequent time instants are estimated and propagated in an on-line fashion. The update of the memberships is carried out mainly using the out-of-sample extension property of the model. Initially the algorithm is tested on computer-generated data sets, then we show that video segmentation can be cast as a semi-supervised learning problem. Furthermore we show how the tracking capabilities of the Kalman filter can be used to provide the labels of objects in motion and thus regularizing the solution obtained by the MSS-KSC algorithm. In the experiments, we demonstrate the performance of the proposed method on synthetic data sets and real-life videos where the clusters evolve in a smooth fashion over time.  相似文献   

15.
This paper proposes a learner-independent multi-task learning (MTL) scheme in which knowledge transfer (KT) is running beyond the learner. In the proposed KT approach, we use minimum enclosing balls (MEBs) as knowledge carriers to extract and transfer knowledge from one task to another. Since the knowledge presented in MEB can be decomposed as raw data, it can be incorporated into any learner as additional training data for a new learning task to improve the learning rate. The effectiveness and robustness of the proposed KT is evaluated, respectively, on multi-task pattern recognition problems derived from synthetic datasets, UCI datasets, and real face image datasets, using classifiers from different disciplines for MTL. The experimental results show that multi-task learners using KT via MEB carriers perform better than learners without-KT, and this has been successfully applied to different classifiers such as k nearest neighbor and support vector machines.  相似文献   

16.
Nayak  Tapas  Majumder  Navonil  Goyal  Pawan  Poria  Soujanya 《Cognitive computation》2021,13(5):1215-1232

The task of relation extraction is about identifying entities and relations among them in free text for the enrichment of structured knowledge bases (KBs). In this paper, we present a comprehensive survey of this important research topic in natural language processing. Recently, with the advances made in the continuous representation of words (word embeddings) and deep neural architectures, many research works are published in the area of relation extraction. To help future research, we present a comprehensive review of the recently published research works in relation extraction. Previous surveys on this task covered only one aspect of relation extraction that is pipeline-based relation extraction approaches at the sentence level. In this survey, we cover sentence-level relation extraction to document-level relation extraction, pipeline-based approaches to joint extraction approaches, annotated datasets to distantly supervised datasets along with few very recent research directions such as zero-shot or few-shot relation extraction, noise mitigation in distantly supervised datasets. Regarding neural architectures, we cover convolutional models, recurrent network models, attention network models, and graph convolutional models in this survey. We survey more than 100 publications in the field of relation extraction and present them in a structured way based on their similarity in the specific task they tried to solve, their model architecture, the datasets they used for experiments. We include the current state-of-the-art performance in several datasets in this paper for comparison. In this paper, we have covered different aspects of research in relation extraction field with a key focus on recent deep neural network-based methods. Also, we identify possible future research directions. Hopefully, this will help future researchers to identify the current research gaps and take the field forward.

  相似文献   

17.

Background/Introduction

Robot localization can be considered as a cognition process that takes place during a robot estimating metric coordinates with vision. It provides a natural method for revealing the true autonomy of robots. In this paper, a kernel principal component analysis (PCA)-regularized least-square algorithm for robot localization with uncalibrated monocular visual information is presented. Our system is the first to use a manifold regularization strategy in robot localization, which achieves real-time localization using a harmonic function.

Methods

The core idea is to incorporate labelled and unlabelled observation data in offline training to generate a regression model smoothed by the intrinsic manifold embedded in area feature vectors. The harmonic function is employed to solve the online localization of new observations. Our key contributions include semi-supervised learning techniques for robot localization, the discovery and use of the visual manifold learned by kernel PCA and some solutions for simultaneous parameter selection. This simultaneous localization and mapping (SLAM) system combines dimension reduction methods, manifold regularization techniques and parameter selection to provide a paradigm of SLAM having self-contained theoretical foundations.

Results and Conclusions

In extensive experiments, we evaluate the localization errors from the perspective of reducing implementation and application difficulties in feature selection and magnitude ratio determination of labelled and unlabelled data. Then, a nonlinear optimization algorithm is adopted for simultaneous parameter selection. Our online localization algorithm outperformed the state-of-the-art appearance-based SLAM algorithms at a processing rate of 30 Hz for new data on a standard PC with a camera.
  相似文献   

18.
Markov Random Walks (MRW) has proven to be an effective way to understand spectral clustering and embedding. However, due to less global structural measure, conventional MRW (e.g., the Gaussian kernel MRW) cannot be applied to handle data points drawn from a mixture of subspaces. In this paper, we introduce a regularized MRW learning model, using a low-rank penalty to constrain the global subspace structure, for subspace clustering and estimation. In our framework, both the local pairwise similarity and the global subspace structure can be learnt from the transition probabilities of MRW. We prove that under some suitable conditions, our proposed local/global criteria can exactly capture the multiple subspace structure and learn a low-dimensional embedding for the data, in which giving the true segmentation of subspaces. To improve robustness in real situations, we also propose an extension of the MRW learning model based on integrating transition matrix learning and error correction in a unified framework. Experimental results on both synthetic data and real applications demonstrate that our proposed MRW learning model and its robust extension outperform the state-of-the-art subspace clustering methods.  相似文献   

19.

In today’s digital era, the use of online social media networks, such as Google, YouTube, Facebook, and Twitter, permits people to generate a massive amount of textual content. The textual content that is produced by people reveals essential information regarding their personality, with psychopathy being among these distinct personality types. This work was aimed at classifying input texts according to the traits of psychopaths and non-psychopaths. Several studies based on traditional techniques, such as the SRPIII technique, using small-sized datasets have been conducted for the detection of psychopathic behavior. However, the purpose of the current study was to build an effective computational model for the detection of psychopaths in the domain of text analytics and computational intelligence. This study was aimed at developing a technique based on a convolutional neural network + long short-term memory (CNN-LSTM) model by using a deep learning approach to detect psychopaths. A convolutional neural network was used to extract local information from a text, while the long short-term memory was used to extract the contextual dependencies of the text. By combining the advantages of convolutional neural network and long short-term memory, the proposed hybrid CNN-LSTM was able to yield a good classification accuracy of 91.67%. Additionally, a large-sized benchmark dataset was acquired for the effective classification of the given input text into psychopath vs. non-psychopath classes, thereby enabling persons with such personality traits to be identified.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号