首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Jin  Lili Cui 《Electrochimica acta》2010,55(24):7230-7234
In this work, graphene/prussian blue (PB) composite nanosheets with good dispersibility in aqueous solutions have been synthesized by mixing ferric-(III) chloride and potassium ferricyanide in the presence of graphene under ambient conditions. Transmission electron microscopy (TEM) shows that the average size of the as-synthesized PB nanoparticles on the surface of graphene nanosheets is about 20 nm. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) patterns have been used to characterize the chemical composition of the obtained graphene/PB composite nanosheets. The graphene/PB composite nanosheets exhibit good electrocatalytic behavior to detection of H2O2 at an applied potential of −0.05 V. The sensor shows a good linear dependence on H2O2 concentration in the range of 0.02-0.2 mM with a sensitivity of 196.6 μA mM−1 cm−2. The detection limit is 1.9 μM at the signal-to-noise ratio of 3. Furthermore, the graphene/PB modified electrode exhibits freedom of interference from other co-existing electroactive species. This work provides a new kind of composite modified electrode for amperometric biosensors.  相似文献   

2.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

3.
Graphene nanosheet (GNS)/Co3O4 composite has been rapidly synthesized by microwave-assisted method. Field emission scanning electron microscopy and transmission electron microscopy observation reveals the homogeneous distribution of Co3O4 nanoparticles (3-5 nm in size) on graphene sheets. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. A maximum specific capacitance of 243.2 F g−1 has been obtained at a scan rate of 10 mV s−1 in 6 M KOH aqueous solution for GNS/Co3O4 composite. Furthermore, the composite exhibits excellent long cycle life along with ∼95.6% specific capacitance retained after 2000 cycle tests.  相似文献   

4.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

5.
Nanowire-structured MnO2 active materials were prepared by a chemical precipitation method and their supercapacitive properties for use in the electrodes of supercapacitors were investigated by means of cyclic voltammetry in an aqueous gel electrolytes consisting of 1 M Na2SO4 and fumed silica (SiO2). The MnO2 electrode showed a maximum specific capacitance of 151 F g−1 after 1000 cycles at 100 mV s−1 when using the gel electrolyte containing 3 wt.% of SiO2, which is higher than 121 F g−1 obtained when using the 1 M Na2SO4 liquid electrolyte alone.  相似文献   

6.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

7.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

8.
A macaroni-like Li1.2V3O8 nanomaterial was directly prepared through a facile solution route using β-cyclodextrin (β-CD) as a template reagent. Its crystal structure was determined by the X-ray diffraction (XRD) pattern. From the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs, we observed that the as-prepared Li1.2V3O8 material consisted of the aggregated macaroni-like nanoparticles and showed a porous structure. The electrochemical properties of the as-prepared Li1.2V3O8 in 1.0 M Li2SO4 aqueous electrolyte were studied through cyclic voltammograms and charge-discharge measurements. The results revealed that the as-prepared Li1.2V3O8 could deliver the initial specific capacities of 189, 140, and 101 mAh g−1 at 0.1, 0.5, and 1.0 C, respectively. It suggests that the as-prepared Li1.2V3O8 should have an attractive future to be applied in aqueous rechargeable lithium battery (ARLB).  相似文献   

9.
A simple and effective method, ethylene glycol-assisted co-precipitation method, has been employed to synthesize LiNi0.5Mn1.5O4 spinel. As a chelating agent, ethylene glycol can realize the homogenous distributions of metal ions at the atomic scale and prevent the growth of LiNi0.5Mn1.5O4 particles. XRD reveals that the prepared material is a pure-phase cubic spinel structure (Fd3m) without any impurities. SEM images show that it has an agglomerate structure with the primary particle size of less than 100 nm. Electrochemical tests demonstrate that the as-prepared LiNi0.5Mn1.5O4 possesses high capacity and excellent rate capability. At 0.1 C rate, it shows a discharge capacity of 137 mAh g−1 which is about 93.4% of the theoretical capacity (146.7 mAh g−1). At the high rate of 5 C, it can still deliver a discharge capacity of 117 mAh g−1 with excellent capacity retention rate of more than 95% after 50 cycles. These results show that the as-prepared LiNi0.5Mn1.5O4 is a promising cathode material for high power Li-ion batteries.  相似文献   

10.
To fabricate all-solid-state Li batteries using three-dimensionally ordered macroporous Li1.5Al0.5Ti1.5(PO4)3 (3DOM LATP) electrodes, the compatibilities of two anode materials (Li4Mn5O12 and Li4Ti5O12) with a LATP solid electrolyte were tested. Pure Li4Ti5O12 with high crystallinity was not obtained because of the formation of a TiO2 impurity phase. Li4Mn5O12 with high crystallinity was produced without an impurity phase, suggesting that Li4Mn5O12 is a better anode material for the LATP system. A Li4Mn5O12/3DOM LATP composite anode was fabricated by the colloidal crystal templating method and a sol-gel process. Reversible Li insertion into the fabricated Li4Mn5O12/3DOM LATP anode was observed, and its discharge capacity was measured to be 27 mA h g−1. An all-solid-state battery composed of LiMn2O4/3DOM LATP cathode, Li4Mn5O12/3DOM LATP anode, and a polymer electrolyte was fabricated and shown to operate successfully. It had a potential plateau that corresponds to the potential difference expected from the intrinsic redox potentials of LiMn2O4 and Li4Mn5O12. The discharge capacity of the all-solid-state battery was 480 μA h cm−2.  相似文献   

11.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

12.
Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.  相似文献   

13.
The compounds, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) are synthesised by the polymer precursor method. The structure and the morphology of the compounds are studied by the Rietveld refined X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques, respectively. Density and the Brunauer, Emmet and Teller surface area (BET) of the compounds are also studied. The cobalt doped compound, Li(Co1/6Mn11/6)O4 is found to be nanosized particles in the range of 60-100 nm, when compared to the other compounds in our present study. The oxidation state and the local structure of the compounds are analysed by the X-ray absorption spectroscopy (XAS) technique. Cyclic voltammetry (CV) and the galvanostatic charge-discharge cycling (30 mA g−1) studies are made in the voltage range of 3.5-4.3 V at room temperature for all the compounds under study. The bare and (Co1/6), and (Co1/12Cr1/12) substituted spinels are cycled at high current rates of 1, 2 and 5C (assuming 1C∼120 mA g−1). Cycling results of Co-substituted spinels show better and long-term capacity retention at all the current rates. At the end of the second cycle, Li(Co1/6Mn11/6)O4 compound delivers a discharge capacity value of 100 (±3) and 87 (±3) mAh g−1 for the current rate of 2 and 5C, respectively. An excellent capacity retention value of 94% is observed at the end of the 1000 cycles for both 2 and 5C rates.  相似文献   

14.
Hierarchical layered hydrous lithium titanate and Li4Ti5O12 microspheres assembled by nanosheets have been successfully synthesized via a hydrothermal process and subsequent thermal treatment. The electrochemical properties of the two samples have been investigated by galvanostatic methods. The former, with the obvious layered structure and a large surface area, delivers a reversible capacity of 180 mA h g−1 after 200 cycles at 200 mA g−1. As for Li4Ti5O12, with the intriguing and unique sawtooth-like morphology, it presents exceptional high rate performance and excellent cycling stability. Up to 132 mA h g−1 is obtained after 200 cycles at 10,000 mA g−1 (57 C), proving itself promising for high-rate applications.  相似文献   

15.
Micro-spherical particle of MnCO3 has been successfully synthesized in CTAB-C8H18-C4H9OH-H2O micro-emulsion system. Mn2O3 decomposed from the MnCO3 is mixed with Li2CO3 and sintered at 800 °C for 12 h, and the pure spinel LiMn2O4 in sub-micrometer size is obtained. The LiMn2O4 has initial discharge specific capacity of 124 mAh g−1 at discharge current of 120 mA g−1 between 3 and 4.2 V, and retains 118 mAh g−1 after 110 cycles. High-rate capability test shows that even at a current density of 16 C, capacity about 103 mAh g−1 is delivered, whose power is 57 times of that at 0.2 C. The capacity loss rate at 55 °C is 0.27% per cycle.  相似文献   

16.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

17.
K.M. Shaju 《Electrochimica acta》2003,48(11):1505-1514
Layered Li(Ni1/2Mn1/2)O2 was prepared by the solution and mixed hydroxide methods, characterised by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and studied by cyclic voltammetry (CV) and charge discharge cycling in CC and CCCV modes at room temperature (r.t.) and at 50 °C. The XPS studies show about 8% of Ni3+ and Mn3+ ions are present in Li(Ni2+1/2Mn1/24+)O2 due to valency-degeneracy. The compound prepared at 950 °C, 12 h, solution method gives a second cycle discharge capacity of 150 mA h g−1 (2.5-4.4 V) at a specific current of 30 mA g−1 and retains 137 mA h g−1 at the end of 40 cycles. CV shows that the redox process at 3.7-4.0 V corresponds to Ni2+↔Ni4+ and clear indication of Mn3+/4+ couple was noted at 4.2-4.5 V. The observed capacity-fading (2.5-4.4 V) is shown to be contributed by the polarisation at the end of charging. The cathodic capacity is stable up to 40 cycles in the voltage window, 2.5-4.2 V both at room temperature and 50 °C.  相似文献   

18.
The authors report a facile chemical precipitation method for the fabrication of a highly ordered mesoporous Mn2O3/MCM-41 composite. Examination of the acquired samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption measurement has provided fundamental insight into the structure and properties of the Mn2O3/MCM-41 composite. It is found that the as-prepared Mn2O3/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 793 m2 g−1. The performance of Mn2O3/MCM-41 composite as a remover was further demonstrated in the removal of azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB), and rhodamine B (RB) with/without visible light irradiation at room temperature. The results show that the Mn2O3/MCM-41 composite has an excellent removal performance for MB and RB, making it a promising candidate for wastewater treatment.  相似文献   

19.
Pure-phase and well-crystallized spinel LiAl0.05Mn1.95O4 powders were successfully synthesized by a simple ultrasonic assisted rheological phase (UARP) method. The structure and morphology properties of this as-prepared powder compared with the pristine LiMn2O4 and LiAl0.05Mn1.95O4 obtained from the solid-state reaction (SSR) method were investigated by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties focused on the LiAl0.05Mn1.95O4 by this new method have also been investigated in detail. According to these tests results, it is obviously to see that the newly prepared sample delivers a relatively high initial discharge capacity of 111.6 mAh g−1, presents excellent rate capability and reversibility, and shows good cycling stability with capacity retention of 90.6% after 70 cycles. Meanwhile, the electrochemical impedance spectroscopy (EIS) investigations were employed to study the electrochemical process of Li+ ions with the synthesized LiAl0.05Mn1.95O4 electrode in detail.  相似文献   

20.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号