首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aniline was copolymerized chemically in presence of five different concentrations of 4,4′-diaminodiphenyl sulphone using potassium persulphate. The copolymer exhibited good solubility in DMF and DMSO. Copolymers were characterized by UV-VIS, FTIR, XRD and SEM studies. The formation of polymer through N-H group was understood from the single N-H stretching vibrational frequency at 3378 cm−1 and bands at 1630 and 1494 cm−1 for quinonoid and benzenoid structures, respectively. The stretching vibration of sulphone SO at 1115 cm−1 clearly indicated the presence of DDS in the copolymer. The X-ray diffraction studies revealed the formation of nano sized crystalline copolymer. When more DDS was incorporated in the copolymer the crystalline nature changed from less to more. The grain size of the copolymer calculated from Scherrer's formula was 83 nm. The nano size copolymer formation was also confirmed through surface morphology (100 nm) studies. The electrical property of the copolymer was studied by four-probe conductivity meter. The synthesized polymers have conductivity of 7.21 × 10−3 to 2.07 × 10−3 S cm−1. The voltammetric and spectroelectrochemical results were also presented.  相似文献   

2.
Jingling Yan 《Polymer》2007,48(21):6210-6214
A series of sulfonated polyimides (SPIs) were synthesized in m-cresol from 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride (BNTDA), 4,4′-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4,4′-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 °C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 °C and 100% relative humidity (RH), and increased to 0.1149-0.9470 S/cm at 80 °C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 × 10−7 cm2/s, which are much lower than that of Nafion 117 (2 × 10−6 cm2/s).  相似文献   

3.
Han Lü  Guohua Tian 《Polymer》2004,45(9):2897-2909
Poly(hydroxyether sulfone) (PHES) was synthesized through polycondensation of bisphenol S with epichlorohydrin. It was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The miscibility in the blends of PHES with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PHES/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed single, composition-dependent glass transition temperatures (Tgs), indicating that the blends are miscible in amorphous state. At elevated temperatures, the PHES/PEO blends underwent phase separation. The phase behavior was investigated by optical microscope and the cloud point curve was determined. A typical lower critical solution temperature behavior was observed in the moderate temperature range for this blend system. FTIR studies indicate that there are the competitive hydrogen bonding interactions upon adding PEO to the system, which was involved with the intramolecular and intermolecular hydrogen bonding interactions, i.e. -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO between PHES and PEO. In terms of the infrared spectroscopic investigation, it is judged that from weak to strong the strength of the hydrogen bonding interactions is in the following order: -OH?OS, -OH?-OH and -OH versus ether oxygen atoms of PEO.  相似文献   

4.
Miscibility and phase behavior in the blends of phenolphthalein poly(ether sulfone) (PES-C) with poly(hydroxyether of bisphenol A) (PH) were investigated by means of differential scanning calorimetry (DSC), high resolution solid state nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). It was found that the homogeneity of the as-prepared blends depended on the solvents used; N,N-dimethylformamide (DMF) provided the segmental mixing for PH and PES-C, which is confirmed by the behavior of single, composition-dependent glass transition temperatures (Tg's). To examine the homogeneity of the blends at the molecular level, the proton spin-lattice relaxation times in the rotating frame T1ρ(H) were measured via 13C CP/MAS NMR spectroscopy as a function of blend composition. In view of the T1ρ(H) values, it is concluded that the PH and PES-C chains are intimately mixed on the scale of 20-30 Å. FTIR studies indicate that there were the intermolecular specific interactions in this blends, involved with the hydrogen-bonding between the hydroxyls of PH and the carbonyls of PES-C, and the strength of the intermolecular hydrogen bonding is weaker than that of PH self-association. At higher temperature, the PH/PES-C blends underwent phase separation. By means of thermal analysis, the phase boundaries of the blends were determined, and the system displayed the lower critical solution temperature behavior. Thermogravity analysis (TGA) showed that the blends exhibited the improved thermal stability, which increases with increasing PES-C content.  相似文献   

5.
A series of novel donor-acceptor type polymers based on 4,4′-bis(2,1,3-benzothiadiazole) were synthesized and characterized. Two soluble regioregular tail-to-tail and head-to-head coupled polymers, poly[7,7′-bis(3-octyl-2-thienyl)-4,4′-bis(2,1,3-benzothiadiazole)] poly[3TBB3T], and poly[7,7′-bis(4-octyl-2-thienyl)-4,4′-bis(2,1,3-benzothiadiazole)] poly[4TBB4T] were synthesized by FeCl3-mediated oxidative polymerization. To further decrease the band gap of the polymers, vinylene spacers were incorporated into the polymer backbone by Stille coupling of the corresponding monomers and (E)-1,2-bis(tributylstannyl)ethene. A crystal structure of a monomer analog shows near planar arrangement of the aromatic units in the solid state. The optical properties of the monomers and polymers were investigated by steady-state absorption and photoluminescence spectroscopy. Cyclic voltammetry measurements indicate that the polymers could be employed as acceptor materials in polymer-polymer bulk heterojunction solar cells due to their low LUMO energy of about −4.0 eV. A maximum photovoltaic power conversion efficiency of about 0.3% was observed for a 1:1 blend of regioregular poly(3-hexylthiophene) (rr-P3HT) and poly[4TBB4T] and the origin of the moderate efficiency is discussed by interpreting the device current-voltage characteristics, external quantum efficiency and incident light intensity dependence of the power conversion efficiency.  相似文献   

6.
Yaqi Yang  Jing Liu  Xiaojun Wang 《Polymer》2011,52(4):1013-1018
Cross-link behavior of an amorphous poly (para-arylene sulfide sulfone amide) synthesized via low temperature solution polycondensation was observed for the first time, when the polymer was subject to a series of thermal curing at 260 °C in air condition. The formation of cross-link network was demonstrated by the DSC and TGA results that Tg of the polymer enhanced from 259.17 °C to 268.89 °C, and the 1% weight loss temperature increased remarkably from 243.75 °C to 345.87 °C. EPR analysis further suggested that two kinds of free radicals, CO and C, induced by thermal curing were responsible for this cross-link behavior. According to FT-IR spectrum, the origin of these free radicals was confirmed as amide CO group in the polymer backbone. The cross-linking type was attributed to conventional radical cross-link reaction and the cross-link mechanism was discussed in detail subsequently.  相似文献   

7.
Poly(ethylene terephthalate-co-4,4′-bibenzoate) (PETBB) fibers containing 5, 15, 35, 45, 55, and 65 mol% bibenzoate (BB) were melt spun. Fiber structure has been determined using wide angle X-ray diffraction, birefringence, and FTIR spectroscopy. When drawn to their respective maximum draw ratios, the structures and properties of high BB containing fibers (PETBB45, 55 and 65) are significantly different than those of PET and low BB containing fibers (PETBB5, 15, and 35). For example, 90% of the ethylene glycol units in high BB containing fibers are in the trans conformation, while only 80% of these units are in trans conformation in PET and low BB containing fibers. Overall orientation of the high BB containing fibers is higher (orientation factor f > 0.85) than those of PET and low BB containing fibers (f < 0.6). Orientation of the crystalline regions is quite high (fcr ∼ 0.95) for both groups of fibers, while orientation of the amorphous regions (fam) of high BB containing fibers is higher (∼0.8) than those of the PET and low BB containing fibers (∼0.4). High BB containing fibers exhibit much higher storage modulus and modulus retention with temperature than low BB containing fibers. Glass transition temperature determined from the dynamic loss tangent peak decreased with increasing BB content, while this transition completely disappeared in the high BB containing fibers. The magnitude of the secondary transition, observed at about −50 °C, decreased with increasing BB content. Another secondary transition, not observed in PET, was observed at about 70 °C in high BB containing fibers. These dynamic mechanical results have been rationalized in terms of the observed structural parameters.  相似文献   

8.
The physical aging process of 4-4′-diaminodiphenylsulfone (DDS) cured diglycidyl ether bisphenol-A (DGEBA) blended with various molecular weights of poly(ether sulfone) (PES; Mn = 28,600, 10,600, and 6,137) was studied by DSC. For DGEBA/DDS system blended with a low MW PES-3 (Mn = 6,137), no phase separation of the polymer blend and only one enthalpic relaxation process due to physical aging was observed. Since the high MW PES-1 (Mn = 28,600) had a Tg close to that of fully cured DGEBA/DDS, the fully cured DGEBA/DDS/PES-1 blend had a broader glass transition than a neat DGEBA/DDS system. However, the DSC results showed two enthalpic relaxation processes due to the physical aging of PES-rich and cured epoxy-rich phases as the material was aged at 155 °C (30 °C below Tg). Since the Tgs of PES-1-rich and epoxy-rich phases overlapped with each other, the enthalpic relaxation processes corresponding to each phase coupled to each other in the earlier stage of physical aging. The medium MW PES-2 (Mn = 10,600) has a much lower Tg than that of fully cured DGEBA/DDS, two well separated Tgs were observed for the cured DGEBA/DDS/PES-2 blend, indicating the cured epoxy was immiscible with PES. Aging the polymer blend at 155 °C (24 °C below Tg1 of the PES-2-rich phase and 53 °C below Tg2 of the epoxy-rich phase) produced two well separated relaxation processes due to PES-2-rich and epoxy-rich phases. The experimental results suggested that aging the polymer blend at a suitable temperature would improve the phase separation between PES-1-rich and epoxy-rich phases.  相似文献   

9.
We prepared a side-chain phenol-functionalized poly(ether sulfone) (P1) from a one-pot reaction of a 4,4′-dihydroxybenzophenone (DHBP)-based poly(ether sulfone), poly(oxy-1,4-phenylenecarbonyl-1,4-phenyleneoxy-1,4-phenylene-sulfonyl-1,4-phenylene (DHBP-PES)), with 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and phenol in the presence of sulphuric acid. The phenol linkages of P1 act as reacting sites for epoxy resins. Subsequently, flexible and light-yellow transparent films of epoxy thermosets can be achieved from the curing of P1 with cresol novolac epoxy (CNE) and diglycidyl ether of bisphenol A (DGEBA). The thermoset based on P1 and CNE (P1/CNE) shows a high Tg value (241 °C), a low coefficient of thermal expansion (44 ppm/°C), and flame retardancy (VTM-0). The moderate-to-high molecular weight of P1 is responsible for the characteristics high Tg and flexibility, which are rarely seen in epoxy thermosets based on a low-molecular weight curing agent.  相似文献   

10.
Three monomers were prepared from 4,4-bis(4′-hydroxyphenyl)valeric acid (BHVA) namely its methylester (BHVAM), its bis-acetylated methylester (BAVAM) and its 4,4-bis(4′-acetoxyphenyl)valeric acid (BAVA). All three monomers were polycondensed in bulk at various temperature profiles using Ti(OBu)4, Co(OAc)2, Mn(OAc)2, Sn(OAc)2 or Bu2Sn(OAc)2 as transesterification catalysts. The structure of the resulting ‘hyperbranched’ polyesters were characterized by 1H NMR spectroscopy, MALDI-TOF mass spectroscopy and in selected cases by SEC. Regardless of the reaction conditions only low oligomers almost free of cycles were obtained from the methylesters BHVAM and BAVAM. Higher molecular weights and high contents of cycles were obtained from polycondensations of BAVA. The content of cycles increased with the conversion. Hyperbranched polyesters with cyclic core were detected up to masses around 10,000 Da. The reactivities of the three hyperbranched monomers were compared with those of bisphenol-A plus dimethyl sebacate or acetylated bisphenol-A plus sebacic acid in ‘linear polycondensations’ and close analogies were found.  相似文献   

11.
4,4′‐bis(Phenoxy)diphenyl sulfone (DPODPS) was synthesized by reaction of phenol with bis(4‐chlorophenyl) sulfone in tetramethylene sulfone in the presence of NaOH. Two poly(aryl ether sulfone ether ketone ketone)s (PESKKs) with high molecular weight were prepared by low temperature solution polycondensation of DPODPS and terephthaloyl chloride (TPC) or isophthaloyl chloride (IPC), respectively, in 1,2‐dichloroethane and in the presence of aluminum chloride (AlCl3) and N‐methylpyrrolidone (NMP). The resulting polymers were characterized by various analytical techniques, such as FT‐IR, 1H‐NMR, DSC, TG, and WAXD. The results show that the Tg and Td of PESEKKs are much higher, but its Tm is lower than those of PEKK. The other results indicate that PESEKKs exhibit excellent thermostabilities at 300 ± 10°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 489–493, 2005  相似文献   

12.
Blocks of phenolphthalein poly(ether sulfone) (PES‐C) were implanted with 110 keV protons in four doses: 1 × 1014, 5 × 1014, 2.5 × 1015, and 1.25 × 1016 ions/cm2. The structures of the pristine and implanted PES‐C blocks were characterized by FTIR–ATR and X‐ray photoelectron spectroscopy (XPS), whereas their friction and wear behavior were investigated with an M‐2000 friction and wear tester at room temperature in an ambient atmosphere. The results revealed that with an increased implantation dose, it took more time for the friction coefficient to become smaller and level off when the dose did not exceed 1016 ions/cm2. At the highest dose, 1.25 × 1016 ions/cm2, the friction coefficient started smaller but increased quickly and leveled off at a higher number. In addition, the wear rate first increased and then decreased. When the dose exceeded 1016 ions/cm2, the wear rate of the sample showed an obvious decrease. The FTIR–ATR spectra showed that partial degradation took place on the surface of PES‐C after proton implantation, and when the dose reached or exceeded 2.5 × 1015 ions/cm2, a new broad peak between 1600 and 1800 cm?1 appeared, showing that a carbon‐rich structure had formed on the sample surface. XPS analyses justified the FTIR–ATR results, including the formation of amorphous carbon and the partial degradation, which was responsible for the variety of friction and wear behaviors of PES‐C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3116–3119, 2006  相似文献   

13.
The thermodynamics of the alpha (α) phase to beta (β) phase transition was investigated in solution of poly(9,9′-dioctylfluorene) in a variety of solvents with UV-vis absorption spectroscopy, differential scanning calorimetry, fluorescence spectroscopy, atomic force microscopy, and near-field scanning optical microscopy. The results show that the solvent quality has a strong affect on the α- to β-conformational change. The trend in enthalpies and transition temperatures indicates that the transition results from an increase in intramolecular interactions upon chain collapse at lower temperatures. This transition leads to subsequent gelation and/or aggregation that stabilizes the β-phase at higher temperatures and leads to a large hysteresis in the transition temperature. The enthalpy for the transition from an aggregated β-phase to a fully solvated α-phase is found to be 21.04 kJ mol−1 of monomer for toluene solutions. Differences between the measured heat and those previously reported are discussed.  相似文献   

14.
A series of hexafluoroisopropylidene bisphenol poly(arylene ether sulfone) (BAF PAES) segmented block copolymers with varying fractions of polydimethylsiloxane (PDMS) were synthesized by a condensation reaction of hydroxyl-terminated BAF PAES and dimethylamino endcapped PDMS. The segmented block copolymers have high thermal stability. The BAF PAES homopolymer exhibits a tensile modulus of 1700 MPa and an elongation at break of 16%. Copolymerizing BAF PAES with increasing molecular weight amounts of PDMS results in tensile properties ranging from plastic to elastomeric where the elongation is 417% for a segmented block copolymer with 64 wt% PDMS incorporated. The morphological properties of these segmented block copolymers were characterized by atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). AFM and TEM images show the segmented block copolymers were microphase separated, and comparison with bisphenol A (BA) PAES-b-PDMS segmented block copolymers revealed complex differences between the morphological behavior of the two systems. SAXS data of the segmented block copolymers supports AFM and TEM images, indicating microphase separation but little long-range order.  相似文献   

15.
Poly(ether sulfone) and poly(ether sulfone ketone) copolymers (I–V) were synthesized by the nucleophilic substitution reaction of 4,4′-dihydroxy diphenyl sulfone (DHDPS, A) with various mole proportions 4,4′-difluoro benzophenone (DFBP, B) and 4,4′-difluoro diphenyl sulfone (DFDPS, C) using sulfolane as solvent in the presence of anhydrous K2CO3. The polymers were characterized by physicochemical and spectroscopic techniques. All polymers were found to be amorphous, and the glass transition temperature (Tg) was found to increase with the sulfonyl content of the polymers. 13C-nuclear magnetic resonance (NMR) spectral data was interpreted in terms of the compositional triads, BAB, BAC, CAC, ABA, and ABB, and indicate that transetherification occurs at high concentration of DFBP units in the polymer (IV). The good agreement between the observed and calculated feed ratios validates the triad analysis. Thermal decomposition studies reveal that the thermal stability of the polymers increases with increase in the carbonyl content in the polymer. Activation energies for thermal decomposition were found to be in the range of 160–203 kJ mol−1 with the cleavage of ϕ SO2 bond being the preponderant mode of decomposition and depended on the block length of the sulfonyl unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2113–2121, 1999  相似文献   

16.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

17.
Monophenylated poly(ether sulfone)s (Ph-PES) and diphenylated poly(ether sulfone)s (DiPh-PES), were synthesized as starting materials for the preparation of sulfonated polymers with well-defined chemical structure. Mild post-polymerization sulfonation conditions led to sulfonated Ph-PES (Ph-SPES) bearing acid groups on both the pendant phenyl group and the backbone, and sulfonated DiPh-PES (DiPh-SPES) bearing acid groups only on the two pendant phenyl groups. Both series of polymers had excellent mechanical properties, high glass transition temperatures, good thermal and oxidative stability, as well as good dimensional stability. It is interesting to note that exclusively pendant-phenyl-sulfonated (bis-sulfophenylated) DiPh-SPES copolymers possessed obviously better thermal and oxidative stability compared with the corresponding pendant-phenyl-sulfonated/main-chain-sulfonated Ph-SPES copolymers. The methanol permeability values of the membranes were in the range of 7.0 × 10−7-9.4 × 10−8 cm2/s at 30 °C, which is several times lower than that of Nafion 117. DiPh-SPES-50 and Ph-SPES-40 also exhibited high proton conductivity (approximately 0.13 S/cm at 100 °C).  相似文献   

18.
Zukui Pei 《Electrochimica acta》2010,55(27):8287-8292
Self-assemblies of 2,6-naphthalenedicarboxylic acid (NDC) and 4,4′-biphenyldicarboxylic acid (BDC) molecules on the highly oriented pyrolytic graphite (HOPG) and reconstructed Au(1 1 1) surfaces has been, respectively, studied by using scanning tunneling microscopy (STM). The NDC molecules form an incommensurate structure, while BDC molecules form a commensurate structure on the HOPG surface. The aromatic rings take the same orientation with that of the underlying HOPG substrate to gain optimum adsorbate-substrate interactions. On the Au(1 1 1) surface, both molecules form incommensurate structures. The orientations of aromatic ring locate about 20° with respect to the gold rows, the 〈1 1 0〉 direction. On the HOPG surface, the whole carboxyl groups are invisible, while the carbon atoms of the carboxyl groups may appear bright on the gold surface.  相似文献   

19.
Poly[3-3′(vinylcarbazole)] (PVK) was synthetized with N-vinylcarbazole as monomer by oxidative polymerization with ferric chloride. The resulting polymer was then deposited on various solid supports by using Langmuir-Schaefer (LS) method. The pressure-area isotherm of PVK revealed the possibility of compact monolayer formation at air-water interface. Different layers of PVK were doped with iodine vapours. Both scanning probe microscopy and optical microscopy images indicated a good uniformity of the films. The morphology and the thickness of PVK films were investigated using atomic force microscopy. The voltammetric investigation of I2 doped PVK showed a distinctive electrochemical behaviour. The photoinduced charge transfer across a donor/acceptor (D/A) hybrid interface provided an effective method to study the photoelectrochemical properties of the composite LS films.  相似文献   

20.
Min Mao  S. Richard Turner 《Polymer》2007,48(21):6241-6245
A linear rigid bisphenol monomer, 4,4′-dihydroxyterphenyl (DHTP), has been incorporated into poly(aryl ether sulfone)s (PAESs) in a study to impart crystallization to these amorphous polymers. The PAES made from DHTP and dichlorodiphenylsulfone (DCDPS) is semi-crystalline but not soluble or thermally processable. Three bisphenols, 4,4′-isopropylidenediphenol (BPA), 4,4′-(hexafluoroisopropylidene)diphenol (BPAF) and 4,4′-dihydroxybiphenyl (BP), have been copolymerized with DHTP and DCDPS in order to study the effect of structure on crystallinity and processability. Both random and segmented copolymers containing different amounts of DHTP have been prepared via standard solution nucleophilic aromatic substitution polymerization technique. Only segmented polysulfone containing 50% BP and 50% DHTP was found to be semi-crystalline. This PAES had a melting temperature (Tm) 320 °C in the first heating cycle of a DSC measurement and the presence of crystallites was confirmed by wide angle X-ray diffraction (WAXS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号