首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic reprogramming, as a key hallmark of cancers, leads to the malignant behavior of pancreatic cancer, which is closely related to tumor development and progression, as well as the supportive tumor microenvironments. Although cells produce adenosine triphosphate (ATP) from glucose by glycolysis when lacking oxygen, pancreatic cancer cells elicit metabolic conversion from oxide phosphorylation to glycolysis, which is well-known as “Warburg effect”. Glycolysis is critical for cancer cells to maintain their robust biosynthesis and energy requirement, and it could promote tumor initiation, invasion, angiogenesis, and metastasis to distant organs. Multiple pathways are involved in the alternation of glycolysis for pancreatic cancer cells, including UHRF1/SIRT4 axis, PRMT5/FBW7/cMyc axis, JWA/AMPK/FOXO3a/FAK axis, KRAS/TP53/TIGAR axis, etc. These signaling pathways play an important role in glycolysis and are potential targets for the treatment of pancreatic cancer. Mutations in glycolytic enzymes (such as LDH, PKM2, and PGK1) also contribute to the early diagnosis and monitoring of pancreatic cancer. In this review, we summarized the recent advances on the mechanisms for glycolysis in pancreatic cancer and the function of glycolysis in the progression of pancreatic cancer, which suggested new targets for cancer diagnosis and treatment.  相似文献   

2.
Glycoproteins produced by tumor cells are involved in cancer progression, metastasis, and the immune response, and serve as possible therapeutic targets. Considering the dismal outcomes of pancreatic ductal adenocarcinoma (PDAC) due to its unique tumor microenvironment, which is characterized by low antitumor T‐cell infiltration, we hypothesized that tumor‐derived glycoproteins may serve as regulating the tumor microenvironment. We used glycoproteomics with tandem mass tag labeling to investigate the culture media of three human PDAC cell lines, and attempted to identify the key secreted proteins from PDAC cells. Among the identified glycoproteins, prosaposin (PSAP) was investigated for its functional contribution to PDAC progression. PSAP is highly expressed in various PDAC cell lines; however, knockdown of intrinsic PSAP expression did not affect the proliferation and migration capacities. Based on the immunohistochemistry of resected human PDAC tissues, high PSAP expression was associated with poor prognosis in patients with PDAC. Notably, tumors with high PSAP expression showed significantly lower CD8+ T‐cell infiltration than those with low PSAP expression. Furthermore, PSAP stimulation decreased the proportion of CD8+ T cells in peripheral blood monocytes. Finally, in an orthotopic transplantation model, the number of CD8+ T cells in the PSAP shRNA groups was significantly increased, resulting in a decreased tumor volume compared with that in the control shRNA group. PSAP suppresses CD8+ T‐cell infiltration, leading to the promotion of PDAC progression. However, further studies are warranted to determine whether this study contributes to the development of a novel immunomodulating therapy for PDAC.  相似文献   

3.
We present a study to evaluate the feasibility and clinical utility of amplicon‐based Oncomine Pan‐Cancer cell‐free assay to detect circulating tumor DNA (ctDNA) in patients with early or advanced breast cancer. In this study, 109 early and metastatic breast cancer patients were recruited before the initiation of treatment. ctDNA mutation profiles were assessed through unique molecular tagging (UMT) and ultradeep next generation sequencing (NGS). For patients with mutations, DNA from corresponding white blood cells (WBC) was sequenced to exclude variants of clonal‐hematopoietic (CH) origin. UMT targeted sequencing from plasma of 109 patients achieved a median total coverage of 55 498X and a median molecular coverage of 4187X. Among 53 ctDNA positive samples, 38% were mutation positive by WBC sequencing, indicating potentially false‐positive results contributed by CH origin. Prevalence of CH‐related mutations was associated with age (= 7.51 × 10−4). After exclusion of CH mutations, ctDNA detection rates were 37% for local or locally advanced breast cancer (stage I‐III) and 81% for metastatic or recurrent breast cancer. The ctDNA detection rate correlated with disease stage (P = 2.60 × 10−4), nodal spread (P = 6.49 × 10−3) and the status of distant metastases (P = 5.00 × 10−4). ctDNA variants were detected mostly in TP53, PIK3CA and AKT1 genes, with variants showing therapeutic relevance. This pilot study endorses the use of targeted NGS for non‐invasive molecular profiling of breast cancer. Paired sequencing of plasma ctDNA and WBC should be implemented to improve accurate interpretation of liquid biopsy.  相似文献   

4.
Approximately 85% colorectal cancers (CRCs) are thought to evolve through the adenoma‐to‐carcinoma sequence associated with specific molecular alterations, including the 5‐hydroxymethylcytosine (5hmC) signature in circulating cell‐free DNA (cfDNA). To explore colorectal disease progression and evaluate the use of cfDNA as a potential diagnostic factor for CRC screening, here, we performed genome‐wide 5hmC profiling in plasma cfDNA and tissue genomic DNA (gDNA) acquired from 101 samples (63 plasma and 38 tissues), collected from 21 early‐stage CRC patients, 21 AD patients, and 21 healthy controls (HC). The gDNA and cfDNA 5hmC signatures identified in gene bodies and promoter regions in CRC and AD groups were compared with those in HC group. All the differential 5hmC‐modified regions (DhMRs) were gathered into four clusters: Disease‐enriched, AD‐enriched, Disease‐lost, and AD‐lost, with no overlap. AD‐related clusters, AD‐enriched and AD‐lost, displayed the unique 5hmC signals in AD patients. Disease‐enriched and Disease‐lost clusters indicated the general 5hmC changes when colorectal lesions occurred. Cancer patients with a confirmable adenoma history segmentally gathered in AD‐enriched clusters. KEGG functional enrichment and GO analyses determined distinct differential 5hmC‐modified profiles in cfDNA of HC individuals, AD, and CRC patients. All patients had comprehensive 5hmC signatures where Disease‐enriched and Disease‐lost DhMR clusters demonstrated similar epigenetic modifications, while AD‐enriched and AD‐lost DhMR clusters indicated complicated subpopulations in adenoma. Analysis of CRC patients with adenoma history showed exclusive 5hmC‐gain characteristics, consistent with the ‘parallel’ evolution hypothesis in adenoma, either developed through the adenoma‐to‐carcinoma sequence or not. These findings deepen our understanding of colorectal disease and suggest that the 5hmC modifications of different pathological subtypes (cancer patients with or without adenoma history) could be used to screen early‐stage CRC and assess adenoma malignancy with large‐scale follow‐up studies in the future.

Abbreviations

5hmC
5‐hydroxymethylcytosine
AD
precancerous adenoma
cfDNA
cell‐free DNA
CRC
colorectal cancer
DhmR
differential 5hmC‐modified regions
gDNA
genomics DNA
HC
healthy control
hMRs
5hmC‐modified regions
  相似文献   

5.
6.
7.
RAS‐MAPK signaling promotes immune evasion and cancer cell survival, and MAPK inhibitors (MAPKis) are frequently used as cancer therapies. Despite progress elucidating the direct effects of MAPKi on immune cells, their indirect effect on the tumor microenvironment (TME) through changes in tumor cells remains incompletely understood. Here, we present evidence of a rapid compensatory response to MAPKi that is driven by sustained p38 MAPK signaling and by which cancer cells can upregulate the immunosuppressive protein CD73 to reduce the antitumor immune response. This compensatory response also results in decreased sensitivity toward MAPKi, and, accordingly, combining anti‐CD73 antibodies and MAPKi significantly enhances the antitumor effect compared to single‐agent treatment in vivo. Combining MAPKi and anti‐CD73 was accompanied by significant alterations in intratumor immune cell composition, supporting the effect of MAPKi‐induced CD73 expression on the TME. We show that high CD73 expression significantly correlates with worse outcome in MAPKi‐treated colorectal cancer patients, highlighting the potential clinical importance of increased CD73 expression following MAPKi treatment. Our findings may explain the diminished effect of MAPKi in cancer patients and provides further rationale for combined anti‐CD73 and MAPKi treatment.  相似文献   

8.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer. Most patients present with advanced disease at diagnosis, which only permits palliative chemotherapeutic treatments. RNA dysregulation is a hallmark of most human cancers, including PDAC. To test the impact of RNA processing dysregulation on PDAC pathology, we performed a bioinformatics analysis to identify RNA‐binding proteins (RBPs) associated with prognosis. Among the 12 RBPs associated with progression‐free survival, we focused on MEX3A because it was recently shown to mark an intestinal stem cell population that is refractory to chemotherapeutic treatments, a typical feature of PDAC. Increased expression of MEX3A was correlated with higher disease stage in PDAC patients and with tumor development in a mouse model of PDAC. Depletion of MEX3A in PDAC cells enhanced sensitivity to chemotherapeutic treatment with gemcitabine, whereas its expression was increased in PDAC cells selected upon chronic exposure to the drug. RNA‐sequencing analyses highlighted hundreds of genes whose expression is sensitive to MEX3A expression, with significant enrichment in cell cycle genes. MEX3A binds to its target mRNAs, like cyclin‐dependent kinase 6 (CDK6), and promotes their stability. Accordingly, knockdown of MEX3A caused a significant reduction in PDAC cell proliferation and in progression to the S phase of the cell cycle. These findings uncover a novel role for MEX3A in the acquisition and maintenance of chemoresistance by PDAC cells, suggesting that it may represent a novel therapeutic target for PDAC.

Abbreviations

CLIP
UV‐crosslink and RNA immunoprecipitation
DFS
disease‐free survival
DR
drug resistant
EMT
mesenchymal transition
MC
MITO‐Cre
MKC
MITO‐Kras‐Cre
PARG
poly (ADP‐ribose) glycohydrolase
PDAC
pancreatic ductal adenocarcinoma
PI
propidium iodide
RBPs
RNA‐binding proteins
RNA‐seq
RNA sequencing
RNP
ribonucleoprotein
TGCA
The Cancer Genome Atlas
  相似文献   

9.
In lung cancer, tumor‐associated macrophages (TAMs), especially M2‐like TAMs, represent the main tumor progression components in the tumor microenvironment (TME). Therefore, M2‐like TAMs may serve as a therapeutic target. The purpose of this study was to investigate the effect of M2‐like TAM depletion in the TME on tumor growth and chemotherapy response in lung cancer. The levels of secreted monocyte chemoattractant protein (MCP‐1) and prostaglandin E2 (PGE2) in the supernatants of lung cancer cell lines A549 and LLC were evaluated via ELISA. Cell migration assays were performed to assess the recruitment ability of macrophage cell lines THP‐1 and J774‐1 cells. Differentiation of macrophages was assessed via flow cytometry. Immunohistochemical staining was performed to visualize M2‐like TAMs in transplanted lung cancer in mouse. We used the COX‐2 inhibitor nimesulide to inhibit the secretion of MCP‐1 and PGE2, which promotes macrophage migration and M2‐like differentiation. Nimesulide treatment decreased the secretion of MCP‐1 and PGE2 from lung cancer cells. Nimesulide treatment suppressed the migration of macrophages by blocking MCP‐1. Lung cancer supernatant induced the differentiation of macrophages toward the M2‐like phenotype, and nimesulide treatment inhibited M2‐like differentiation by blocking MCP‐1 and PGE2. In the lung cancer mouse model, treatment with nimesulide depleted M2‐like TAMs in the TME and enhanced the tumor inhibitory effect of cisplatin. Our results indicated that blocking the secretion of MCP‐1 and PGE2 from tumor cells depleted M2‐like TAMs in the TME and the combination therapy with cisplatin considerably suppressed tumor growth in the LLC mouse model.  相似文献   

10.
Transforming growth factor‐β (TGF‐β) and programmed death ligand 1 (PD‐L1) initiate signaling pathways with complementary, nonredundant immunosuppressive functions in the tumor microenvironment (TME). In the TME, dysregulated TGF‐β signaling suppresses antitumor immunity and promotes cancer fibrosis, epithelial‐to‐mesenchymal transition, and angiogenesis. Meanwhile, PD‐L1 expression inactivates cytotoxic T cells and restricts immunosurveillance in the TME. Anti‐PD‐L1 therapies have been approved for the treatment of various cancers, but TGF‐β signaling in the TME is associated with resistance to these therapies. In this review, we discuss the importance of the TGF‐β and PD‐L1 pathways in cancer, as well as clinical strategies using combination therapies that block these pathways separately or approaches with dual‐targeting agents (bispecific and bifunctional immunotherapies) that may block them simultaneously. Currently, the furthest developed dual‐targeting agent is bintrafusp alfa. This drug is a first‐in‐class bifunctional fusion protein that consists of the extracellular domain of the TGF‐βRII receptor (a TGF‐β ‘trap’) fused to a human immunoglobulin G1 (IgG1) monoclonal antibody blocking PD‐L1. Given the immunosuppressive effects of the TGF‐β and PD‐L1 pathways within the TME, colocalized and simultaneous inhibition of these pathways may potentially improve clinical activity and reduce toxicity.  相似文献   

11.
12.
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real‐time follow‐up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood‐based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.  相似文献   

13.
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.  相似文献   

14.
Chronic myeloid leukemia is driven by the BCR‐ABL oncoprotein, a constitutively active protein tyrosine kinase. Although tyrosine kinase inhibitors (TKIs) have greatly improved the prognosis of CML patients, the emergence of TKI resistance is an important clinical problem, which deserves additional treatment options based on unique biological properties to CML cells. In this study, we show that metabolic homeostasis is critical for survival of CML cells, especially when the disease is in advanced stages. The BCR‐ABL protein activates AMP‐activated protein kinase (AMPK) for ATP production and the mTOR pathway to suppress autophagy. BCR‐ABL is detected in the nuclei of advanced‐stage CML cells, in which ATP is sufficiently supplied by enhanced glucose metabolism. AMP‐activated protein kinase is further activated under energy‐deprived conditions and triggers autophagy through ULK1 phosphorylation and mTOR inhibition. In addition, AMPK phosphorylates 14‐3‐3 and Beclin 1 to facilitate cytoplasmic translocation of nuclear BCR‐ABL in a BCR‐ABL/14‐3‐3τ/Beclin1/XPO1 complex. Cytoplasmic BCR‐ABL protein undergoes autophagic degradation when intracellular ATP is exhausted by disruption of the energy balance or forced autophagy flux with AMP mimetics, mTOR inhibitors, or arsenic trioxide, leading to apoptotic cell death. This pathway represents a novel therapeutic vulnerability that could be useful for treating TKI‐resistant CML.  相似文献   

15.
The processes of cancer initiation, progression, and response to therapy are affected by the sex of cancer patients. Immunotherapy responses largely depend on the tumor microenvironment (TME), but how sex may shape some TME features, remains unknown. Here, we analyzed immune infiltration signatures across 19 cancer types from 1771 male and 1137 female patients in The Cancer Genome Atlas to evaluate how sex may affect the tumor mutational burden (TMB), immune scores, stromal scores, tumor purity, immune cells, immune checkpoint genes, and functional pathways in the TME. Pan‐cancer analyses showed higher TMB and tumor purity scores, as well as lower immune and stromal scores in male patients as compared to female patients. Lung adenocarcinoma, lung squamous carcinoma, kidney papillary carcinoma, and head and neck squamous carcinoma showed the most significant sex biases in terms of infiltrating immune cells, immune checkpoint gene expression, and functional pathways. We further focused on lung adenocarcinoma samples in order to identify and validate sex‐specific immune cell biomarkers with prognostic potential. Overall, sex may affect the tumor microenvironment, and sex‐specific TME biomarkers may help tailor cancer immunotherapy in certain cancer types.  相似文献   

16.
Macroautophagy (hereafter autophagy) is a cellular homeostatic mechanism that involves protein and organelle degradation, and has a number of connections to human physiology and diseases. Autophagy in tumor parenchyma acts as either a tumor‐promoting role or a tumor‐inhibiting role depending on the types and stages of tumors. In recent years, attention to autophagy in tumor stroma that is referred as “autophagic tumor stroma” has created a new paradigm to understand the role of autophagy in cancer. Here we propose that the autophagic tumor stroma is a phenomenon of adaptation at a certain stage of tumor development, and has a prominent role in tumor growth, progression and spread of tumors. This idea is supported by recent studies: (i) Autophagic tumor stroma is activated by hypoxia and cancer cells induced oxidative stress, when tumors grow to a certain stage; (ii) Autophagic tumor stroma aids in providing essential nutrients to malignant cells, remodeling the tumor microenvironment, increasing DNA damage, genetic instability and stemness in cancer cells, and decreasing the apoptotic sensitivity of cancer cells. The autophagic tumor stroma is therefore a significant determinant in tumor growth and progression and implicates an important target for cancer therapies.  相似文献   

17.
Circulating cell‐free DNA (cfDNA) fragmentomics, which encompasses the measurement of cfDNA length and short nucleotide motifs at the ends of cfDNA molecules, is an emerging field for cancer diagnosis. The utilization of cfDNA fragmentomics for the diagnosis of patients with hepatocellular carcinoma (HCC) caused by hepatitis B virus (HBV) is currently limited. In this study, we utilized whole‐genome sequencing data of cfDNA in samples from patients with HCC (n = 197) and HBV (n = 187) to analyze the association of fragment size selection (< 150 bp) with tumor fraction (TF), copy number variation (CNV) alterations and the change in the proportion of 4‐mer end motifs in HCC and HBV samples. Our analyses identified five typical CNV markers (i.e. loss in chr1p, chr4q and chr8p, and gain in chr1q and chr8q) in cfDNA with a cumulatively positive rate of ˜ 95% in HCC samples. Size selection (< 150 bp) significantly enhanced TF and CNV signals in HCC samples. Additionally, three 4‐mer end motifs (CCCA, CCTG and CCAG) were identified as preferred end motifs in HCC samples. We identified 139 end motifs significantly associated with fragment size that showed similar patterns of associations between patients with HCC and HBV, suggesting that end motifs might be inherently coupled with fragment size by a ubiquitous mechanism. Here we conclude that CNV markers, fragment size selection and end‐motif pattern in cfDNA have potential for effective detection of patients with HCC.  相似文献   

18.
机体免疫有宿主保护和肿瘤促进双重作用免疫微环境对肿瘤的促进作用知之甚少。研究发现本文讨论免疫微环境可直接或间接地影响肿瘤的发生发展,其机制。其机制包括促进肿瘤血管生成、改变肿瘤的生物学特性、筛选适应微环境的肿瘤细胞存活或建立适宜的肿瘤微环境促进肿瘤进展,甚至可以调节肿瘤干细胞活性。基于免疫微环境在肿瘤发生发展中的重要作用,免疫治疗成为一种重要的抗肿瘤治疗手段,而探索免疫治疗和细胞毒药物或分子靶向药物联合的多模式治疗可能是未来肿瘤免疫治疗的方向。  相似文献   

19.
Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid‐tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock‐in mice that express CHIP‐associated mutant Asxl1 (Asxl1‐MT), we showed that expression of Asxl1‐MT in T cells, but not in myeloid cells, promoted solid‐tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1‐MT–expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV‐PyMT. Intratumor analysis of the mammary tumors revealed the reduced T‐cell infiltration at tumor sites and programmed death receptor‐1 (PD‐1) upregulation in CD8+ T cells in MMTV‐PyMT/Asxl1‐MT mice. In addition, we found that Asxl1‐MT induced T‐cell dysregulation, including aberrant intrathymic T‐cell development, decreased CD4/CD8 ratio, and naïve‐memory imbalance in peripheral T cells. These results indicate that Asxl1‐MT perturbs T‐cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1‐mutated blood cells exacerbate solid‐tumor progression in ASXL1‐CHIP carriers.  相似文献   

20.
Accumulated clinical data of immune checkpoint blockades have suggested the importance of neoantigens in cancer immunity. Tumor antigens are released from dead cancer cells together with cellular components, such as damage‐associated molecular patterns (DAMPs), into the tumor microenvironment. We recently reported that high mobility group box 1 (HMGB1), a representative DAMP molecule, showed a negative impact on anti‐tumor immunity. However, a positive role of HMGB1 in the initiation of innate and subsequent adaptive immunity has also been demonstrated; thus, the effects of HMGB1 on anti‐tumor immunity have not been well understood. In this study, we identified nine immunogenic neoantigen epitopes of B16F10 murine melanoma cells and subsequently investigated the effects of suppression of HMGB1 on the induction of neoantigen‐specific immunity using HMGB1‐knockout tumors. Neoantigen‐reactive T cells were expanded in B16F10 tumor‐bearing mice, and T cell receptor repertoire analysis suggested that neoantigen‐reactive T cells were oligo‐clonally increased in B16F10 tumor bearers. An increase of neoantigen‐reactive T cells and oligoclonal expansion of the T cells were similarly detected in HMGB1‐knockout tumor‐bearing mice. The induction of neoantigen‐specific immunity under the suppression of HMGB1 in the tumor microenvironment shown in this study supports further development of combination therapy of HMGB1 suppression with neoantigen‐targeted cancer immunotherapies, including immune checkpoint blockade therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号