首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Segmentation of multiple sclerosis (MS) lesion is important for many neuroimaging studies. In this paper, we propose a novel algorithm for automatic segmentation of MS lesions from multi-channel MR images (T1W, T2W and FLAIR images). The proposed method is an extension of Li et al.'s algorithm in [1], which only segments the normal tissues from T1W images. The proposed method is aimed to segment MS lesions, while normal tissues are also segmented and bias field is estimated to handle intensity inhomogeneities in the images. Another contribution of this paper is the introduction of a nonlocal means technique to achieve spatially regularized segmentation, which overcomes the influence of noise. Experimental results have demonstrated the effectiveness and advantages of the proposed algorithm.  相似文献   

2.
This paper proposes a new energy minimization method called multiplicative intrinsic component optimization (MICO) for joint bias field estimation and segmentation of magnetic resonance (MR) images. The proposed method takes full advantage of the decomposition of MR images into two multiplicative components, namely, the true image that characterizes a physical property of the tissues and the bias field that accounts for the intensity inhomogeneity, and their respective spatial properties. Bias field estimation and tissue segmentation are simultaneously achieved by an energy minimization process aimed to optimize the estimates of the two multiplicative components of an MR image. The bias field is iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. More importantly, the energy in our formulation is convex in each of its variables, which leads to the robustness of the proposed energy minimization algorithm. The MICO formulation can be naturally extended to 3D/4D tissue segmentation with spatial/sptatiotemporal regularization. Quantitative evaluations and comparisons with some popular softwares have demonstrated superior performance of MICO in terms of robustness and accuracy.  相似文献   

3.
4.
Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches.  相似文献   

5.
BackgroundMagnetic resonance images with multiple contrasts or sequences are commonly used for segmenting brain tissues, including lesions, in multiple sclerosis (MS). However, acquisition of images with multiple contrasts increases the scan time and complexity of the analysis, possibly introducing factors that could compromise segmentation quality.ObjectiveTo investigate the effect of various combinations of multi-contrast images as input on the segmented volumes of gray (GM) and white matter (WM), cerebrospinal fluid (CSF), and lesions using a deep neural network.MethodsU-net, a fully convolutional neural network was used to automatically segment GM, WM, CSF, and lesions in 1000 MS patients. The input to the network consisted of 15 combinations of FLAIR, T1-, T2-, and proton density-weighted images. The Dice similarity coefficient (DSC) was evaluated to assess the segmentation performance. For lesions, true positive rate (TPR) and false positive rate (FPR) were also evaluated. In addition, the effect of lesion size on lesion segmentation was investigated.ResultsHighest DSC was observed for all the tissue volumes, including lesions, when the input was combination of all four image contrasts. All other input combinations that included FLAIR also provided high DSC for all tissue classes. However, the quality of lesion segmentation showed strong dependence on the input images. The DSC and TPR values for inputs with the four contrast combination and FLAIR alone were very similar, but FLAIR showed a moderately higher FPR for lesion size <100 μl. For lesions smaller than 20 μl all image combinations resulted in poor performance. The segmentation quality improved with lesion size.ConclusionsBest performance for segmented tissue volumes was obtained with all four image contrasts as the input, and comparable performance was attainable with FLAIR only as the input, albeit with a moderate increase in FPR for small lesions. This implies that acquisition of only FLAIR images provides satisfactory tissue segmentation. Lesion segmentation was poor for very small lesions and improved rapidly with lesion size.  相似文献   

6.
Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segmentation approaches use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images. We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally, we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available benchmark dataset. Results show a similar performance to other state-of-the-art multimodal methods, as well as to the human rater.  相似文献   

7.
Intensity inhomogeneity is the prime obstacle for MR image processing like automatic segmentation, registration etc. This complication has strong dependence on the associated acquisition hardware and patient anatomy which recommends retrospective correction. In this paper, a new method is developed for correcting the intensity inhomogeneity using a non-iterative multi-scale approach that doesn't necessitate segmentation and any prior knowledge on the scanner or subject. The proposed algorithm extracts bias field at different scales using a Log-Gabor filter bank followed by smoothing operation. Later, they are combined to fit a third degree polynomial to estimate the bias field. Finally, the corrected image is estimated by performing pixel-wise division of original image and bias field. The performance of the same was tested on BrainWeb simulated data, HCP dataset and is found to provide better performance than the state-of-the-art method, N4. A good agreement between the extracted and ground truth bias field is observed through correlation coefficient on different MR modality images that include T1w, T2w and PD. Significant reduction in coefficient variation and coefficient of joint variation ratios in real data indicate an improved inter-class separation and reduced intra-class intensity variations across white and grey matter tissue regions.  相似文献   

8.
Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.  相似文献   

9.
In the present study an automatic algorithm for detection and contouring of multiple sclerosis (MS) lesions in brain magnetic resonance (MR) images is introduced. This algorithm automatically detects MS lesions in axial proton density, T2-weighted, gadolinium enhanced, and fast fluid attenuated inversion recovery (FLAIR) brain MR images. Automated detection consists of three main stages: (1) detection and contouring of all hyperintense signal regions within the image; (2) partial elimination of false positive segments (defined herein as artifacts) by size, shape index, and anatomical location; (3) the use of an artificial neural paradigm (Back-Propagation) for final removal of artifacts by differentiating them from true MS lesions. The algorithm was applied to 45 images acquired from 14 MS patients. The algorithm’s sensitivity was 0.87 and the specificity 0.96. In 34 images, 100% of the lesions were detected. The algorithm potentially may serve as a useful preprocessing tool for quantitative MS monitoring via magnetic resonance imaging.  相似文献   

10.
A novel, fast entropy-minimization algorithm for bias field correction in magnetic resonance (MR) images is suggested to correct the intensity inhomogeneity degradation of MR images that has become an increasing problem with the use of phased-array coils. Four important modifications were made to the conventional algorithm: (a) implementation of a modified two-step sampling strategy for stacked 2D image data sets, which included reducing the size of the measured image on each slice with a simple averaging method without changing the number of slices and then using a binary mask generated by a histogram threshold method to define the sampled voxels in the reduced image; (b) improvement of the efficiency of the correction function by using a Legendre polynomial as an orthogonal base function polynomial; (c) use of a nonparametric Parzen window estimator with a Gaussian kernel to calculate the probability density function and Shannon entropy directly from the image data; and (d) performing entropy minimization with a conjugate gradient method. Results showed that this algorithm could correct different types of MR images from different types of coils acquired at different field strengths very efficiently and with decreased computational load.  相似文献   

11.
It is a big challenge to segment magnetic resonance (MR) images with intensity inhomogeneity. The widely used segmentation algorithms are region based, which mostly rely on the intensity homogeneity, and could bring inaccurate results. In this paper, we propose a novel region-based active contour model in a variational level set formulation. Based on the fact that intensities in a relatively small local region are separable, a local intensity clustering criterion function is defined. Then, the local function is integrated around the neighborhood center to formulate a global intensity criterion function, which defines the energy term to drive the evolution of the active contour locally. Simultaneously, an intensity fitting term that drives the motion of the active contour globally is added to the energy. In order to segment the image fast and accurately, we utilize a coefficient to make the segmentation adaptive. Finally, the energy is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. Experiments on synthetic and real MR images show the effectiveness of our method.  相似文献   

12.
MRI is a very sensitive imaging modality, however with relatively low specificity. The aim of this work was to determine the potential of image post-processing using 3D-tissue segmentation technique for identification and quantitative characterization of intracranial lesions primarily in the white matter. Forty subjects participated in this study: 28 patients with brain multiple sclerosis (MS), 6 patients with subcortical ischemic vascular dementia (SIVD), and 6 patients with lacunar white matter infarcts (LI). In routine MR imaging these pathologies may be almost indistinguishable. The 3D-tissue segmentation technique used in this study was based on three input MR images (T(1), T(2)-weighted, and proton density). A modified k-Nearest-Neighbor (k-NN) algorithm optimized for maximum computation speed and high quality segmentation was utilized. In MS lesions, two very distinct subsets were classified using this procedure. Based on the results of segmentation one subset probably represent gliosis, and the other edema and demyelination. In SIVD, the segmented images demonstrated homogeneity, which differentiates SIVD from the heterogeneity observed in MS. This homogeneity was in agreement with the general histological findings. The LI changes pathophysiologically from subacute to chronic. The segmented images closely correlated with these changes, showing a central area of necrosis with cyst formation surrounded by an area that appears like reactive gliosis. In the chronic state, the cyst intensity was similar to that of CSF, while in the subacute stage, the peripheral rim was more prominent. Regional brain lesion load were also obtained on one MS patient to demonstrate the potential use of this technique for lesion load measurements. The majority of lesions were identified in the parietal and occipital lobes. The follow-up study showed qualitatively and quantitatively that the calculated MS load increase was associated with brain atrophy represented by an increase in CSF volume as well as decrease in "normal" brain tissue volumes. Importantly, these results were consistent with the patient's clinical evolution of the disease after a six-month period. In conclusion, these results show there is a potential application for a 3D tissue segmentation technique to characterize white matter lesions with similar intensities on T(2)-weighted MR images. The proposed methodology warrants further clinical investigation and evaluation in a large patient population.  相似文献   

13.
在磁共振图像(MR)的偏差场纠正中,针对灰度信息最小化方法没有考虑空间信息问题,提出联合信息最小化方法,该方法把图像的灰度信息和空间信息结合起来.空间信息采用灰度导数信息.被偏差场破坏的图像灰度及其导数值的联合信息(联合熵)大于对应的没被偏差场破坏的图像联合熵.联合熵是通过计算灰度及其导数值的联合概率分布得到.仿真脑部MR数据和临床脑部MR数据的试验结果都表明,灰度及其二阶导数联合信息最小化方法纠正效果良好,大大减少了脑白质和脑灰质的灰度交叠.  相似文献   

14.
White matter (WM) lesions are diffuse WM abnormalities that appear as hyperintense (bright) regions in cranial magnetic resonance imaging (MRI). WM lesions are often observed in older populations and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. In this paper, a new automated method for WM lesions segmentation is presented. In the proposed method, the presence of WM lesions is detected as outliers in the intensity distribution of the fluid-attenuated inversion recovery (FLAIR) MR images using an adaptive outlier detection approach. Outliers are detected using a novel adaptive trimmed mean algorithm and box-whisker plot. In addition, pre- and postprocessing steps are implemented to reduce false positives attributed to MRI artifacts commonly observed in FLAIR sequences. The approach is validated using the cranial MRI sequences of 38 subjects. A significant correlation (R=0.9641, P value=3.12×10(-3)) is observed between the automated approach and manual segmentation by radiologist. The accuracy of the proposed approach was further validated by comparing the lesion volumes computed using the automated approach and lesions manually segmented by an expert radiologist. Finally, the proposed approach is compared against leading lesion segmentation algorithms using a benchmark dataset.  相似文献   

15.
宋阳  谢海滨  杨光 《波谱学杂志》2016,33(4):559-569
字典学习算法可以根据数据本身的特点构建稀疏域中的基,从而使数据的表示更加稀疏.该文在传统的字典学习算法基础上提出了分割字典学习算法,由于部分磁共振图像组织结构简单、可以进行图像分割,因此可根据此特点来优化字典中基函数的构建,使磁共振图像的表达更为稀疏,从而获得更高的重建图像质量.该文利用模拟数据和真实数据进行了重建实验,结果表明与传统的字典学习算法相比,分割字典学习算法能进一步改善重建图像质量.  相似文献   

16.
Hong Fan 《中国物理 B》2021,30(7):78703-078703
To solve the problem that the magnetic resonance (MR) image has weak boundaries, large amount of information, and low signal-to-noise ratio, we propose an image segmentation method based on the multi-resolution Markov random field (MRMRF) model. The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales. The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm, and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation. The results are then segmented by the improved MRMRF model. In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model, it is proposed to introduce variable weight parameters in the segmentation process of each scale. Furthermore, the final segmentation results are optimized. We name this algorithm the variable-weight multi-resolution Markov random field (VWMRMRF). The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness, and can accurately and stably achieve low signal-to-noise ratio, weak boundary MR image segmentation.  相似文献   

17.
Hepatic vessel segmentation is a challenging step in therapy guided by magnetic resonance imaging (MRI). This paper presents an improved variational level set method, which uses non-local robust statistics to suppress the influence of noise in MR images. The non-local robust statistics, which represent vascular features, are learned adaptively from seeds provided by users. K-means clustering in neighborhoods of seeds is utilized to exclude inappropriate seeds, which are obviously corrupted by noise. The neighborhoods of appropriate seeds are placed in an array to calculate the non-local robust statistics, and the variational level set formulation can be constructed. Bias correction is utilized in the level set formulation to reduce the influence of intensity inhomogeneity of MRI. Experiments were conducted over real MR images, and showed that the proposed method performed better on small hepatic vessel segmentation compared with other segmentation methods.  相似文献   

18.
In this paper, we propose a dual image approach to correcting intensity inhomogeneities for MR images acquired using surface coils. Previous methods are usually not satisfactory due to restricted application domains, considerable human interactions, or some undesirable artifacts. The proposed algorithm provides nice correction results for a variety of surface-coil MR images. It is accomplished by using an additional body-coil MR image of a smaller size captured at the same position as that of the surface-coil image to facilitate the estimation of the bias field function. The correction algorithm consists of aligning the surface-coil image with the body-coil image and fitting a spline surface from a sparse set of data points for the associated bias field function. Experiments on some real images show satisfactory correction results by using the proposed algorithm.  相似文献   

19.
The even-ordered (2nd, 4th and 6th) derivatives of a brain MRI histogram were used to calculate a characteristic value for white matter, which was used to normalize the image intensity scale. Simulated image histograms were used to estimate the methodological error as a function of noise level, and the optimum derivative order was determined for each image type studied (T1-, T2- and density-weighted). The algorithm yielded highly reproducible results when used in conjunction with a threshold-sensitive brain segmentation algorithm. It also proved insensitive to the presence of extra-cranial tissues. This method of histogram analysis could find utility in a variety of applications that demand robust intensity normalization including image registration, brain segmentation, tissue classification and spatial inhomogeneity correction.  相似文献   

20.
为自动检测出眼底图像中的视网膜内出血,从而构建基于眼底图像的糖尿病视网膜病变自动筛查系统,提出了基于多模板匹配的局部自适应区域生长法用以自动检测该病灶。首先,对眼底主要生理结构进行光谱特征分析,从而为不同分割目标选取合适的RGB通道;其次,利用HSV空间的亮度校正以及对比度受限自适应直方图均衡方法对眼底图像进行预处理;在此基础上利用设计好的多个模板对图像进行归一化互相关模板匹配获取该病灶候选区域;然后,从中去除视盘、血管以消除相关假阳,从而得到区域生长所需种子;最后,利用局部自适应区域生长法获取其精确轮廓,从而实现该病灶的准确检测。利用该算法对90幅不同颜色、不同亮度、不同质量、不同分辨率眼底图像进行该病灶的自动检测,实验结果表明:该算法能快速、有效地自动检测出眼底图像中的视网膜内出血,且算法稳定可靠,可满足临床需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号