首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
源自固定源(如燃煤电厂烟气)和移动源(如机动车尾气)排放的氮氧化物(NOx)造成了严重的大气污染,对其进行减排控制已迫在眉睫. 研究表明, 氨选择性催化还原(NH3-SCR)技术是消除NOx的最有效手段之一.铈基催化剂因其良好的氧化还原性能、适当的表面酸性、较高的储/释氧容量以及丰富的资源储备而被广泛用于NH3-SCR反应. 探讨铈基组分在该反应中发挥的具体作用, 有助于了解相关催化过程的本质, 为现有催化剂的优化和新型催化剂的设计提供科学参考. 基于CeO2在NH3-SCR催化剂中扮演的不同角色, 本文从CeO2作为载体、铈基复合氧化物、表面负载组分(助剂和活性组分)以及特殊结构的铈基催化剂等方面系统地介绍了近年来铈基催化剂在NH3-SCR反应中的最新研究进展, 并对该领域未来可能的发展方向进行了展望.  相似文献   

2.
王峰  吴自力 《催化学报》2020,(6):899-900
Ceria,which acts as a“star”among the metal-oxides,has established to be one of the most promising materials for chemical transformations and energy applications owing to its redox and acid–base properties.Ceria has become a key component in three-way catalytic converters,water-gas shift reaction,CO oxidation,methane combustion,and complex organic reactions.More importantly,introducing of other metals to ceria,tailoring the shape of the ceria,and reducing structure size of ceria,usually decrease the formation energy of oxygen vacancy(V?)and lead to unique catalytic performances.  相似文献   

3.
近年来,氨-选择催化还原(NH3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NOx)排放的最有效手段之一.V2O5-WO3/TiO2和V2O5-MoO3/TiO2催化剂在300–400°C范围内表现出优异的脱硝性能和抗H2O和SO2中毒性能,因而被广泛用于NH3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO2到SO3的活性较高、高温下将部分NH3非选择性地氧化成N2O、V2O5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO2)因具有氧化还原性能优异、储/释氧能力强和Ce3+/Ce4+转换容易等优点而广泛用于NH3-SCR反应.然而,单纯CeO2的脱硝性能并不理想.研究表明,将CeO2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH3-SCR催化性能的影响规律尚不明晰.此外,SiO2,γ-Al2O3,ZrO2和TiO2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO2,γ-Al2O3,ZrO2和TiO2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO2/SiO2,CeO2/γ-Al2O3,CeO2/ZrO2和CeO2/TiO2)用于NH3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H2-TPR)以及氨气-程序升温脱附(NH3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO2/γ-Al2O3催化剂的表面Ce3+含量明显大于CeO2/SiO2,CeO2/ZrO2和CeO2/TiO2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH3-SCR反应性能.其次,CeO2/γ-Al2O3催化剂具有最佳的还原性能,有利于NO氧化为NO2,进而通过"快速NH3-SCR"途径提升其催化性能.再者,CeO2/γ-Al2O3催化剂表面酸性位最多,能够促进反应物NH3分子的吸附与活化,从而提高脱硝性能.最后,CeO2/γ-Al2O3催化剂在H2O和SO2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

4.
赵倩  葛云丽  纪娜  宋春风  马德刚  刘庆岭 《化学进展》2016,28(12):1847-1859
挥发性有机物(VOCs)是一类具有毒性且对环境和人体健康产生威胁的有机化合物。目前催化氧化技术是有效净化VOCs的方法之一,它可以将VOCs转化为CO2和H2O。本文在总结国内外VOCs净化技术的基础上,着重介绍了催化氧化技术,并且对常用的催化剂种类、催化机理及存在的问题进行了总结。最后对催化氧化技术的发展趋势进行了展望。研究结果表明,贵金属催化剂的研究关键在于有效载体的选择及催化剂抗中毒性能的提高;与贵金属催化剂相比,钙钛矿和尖晶石等非贵金属催化剂的发展趋势为通过改变催化剂配方、催化剂形貌结构、活性组分粒径大小及比表面积等来提高催化剂的低温可还原性、储氧能力和氧缺陷,进而提高其催化性能。本文的评述将为选择合适的催化剂处理VOCs提供一定的参考基础。  相似文献   

5.
铈基氧化物催化剂上氧物种的EPR研究   总被引:2,自引:0,他引:2  
徐法强  杨廷录 《分子催化》1996,10(5):320-327
选择CeO2、20%(mol)Ce/Sr及SrCO33种甲烷氧化偶联催化剂,进行了吸附氧的EPR及骤冷EPR研究,对氧物种的形式、吸附方式及在反应中的作用进行了深入讨论.实验发现,氧化铈及复合催化剂很容易吸附氧分子产生O2-超氧离子,而碳酸锶表面不利于O-2的生成.O-2可以不同方式吸附于催化剂表面,不同方式吸附的O-2具有不同的氧化能力和稳定性.不同温度下骤冷可以在复合催化剂上得到几乎相同强度的O-2EPR信号,因此O-2可能不是甲烷的选择活化中心,而是在反应条件下转化成了O2-2或O-选择性物种.复合催化剂中的SrCO3,对CeO2中氧的流动性及产生氧中间体的能力起到了调节作用,抑制了过氧化.  相似文献   

6.
铈在乙苯脱氢氧化铁基催化剂中的助催化作用   总被引:6,自引:0,他引:6  
研究了铈在Fe_2O_3-K_2O-CeO_2乙苯脱氢催化剂中的助催化作用。铈源为硝酸铈时助催效果明显,但CeO_2则不佳。助催化效果还与催化剂中的钾量有关。铈明显增进高钾催化剂的活性,但对催化剂的选择性无明显影响。  相似文献   

7.
以堇青石蜂窝陶瓷为基体,纳米氧化物(CeO2、γ-Al2O3、SiO2)为涂层载体,通过悬浮涂渍法和溶胶-凝胶法两步制得LaCoO3/CeO2/堇青石、LaCoO3/γ-Al2O3/堇青石、LaCoO3/SiO2/堇青石三种整体式催化剂.通过XRD、SEM、XPS、H2TPR、UT和N2吸附-脱附等技术,对样品的物相、...  相似文献   

8.
铈基催化剂的密度泛函理论研究进展   总被引:3,自引:0,他引:3  
铈基催化剂是重要的汽车尾气三元转化(TWCs)及挥发性有机废气(VOCs)氧化催化剂,从理论上系统研究载体、活性组分的性质及其相互作用,反应物在铈基催化剂上吸附与反应行为,可认识催化现象的电子本质,加深反应机制的理解,为催化剂的设计提供理论参考与依据。本文通过CeO2体相、表面、氧空位、团簇性质,探针分子在CeO2表面吸附反应行为,金属铈基催化剂性质及探针分子在其表面吸附与反应等4个方面对近年来的研究工作进行了综述,指出了铈基催化剂研究的方向与前景。  相似文献   

9.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理 VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的 VOCs治理技术,因此研发新型高效 VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除 VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除 VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型 VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co3O4, MnO2, Fe2O3, Cr2O3和 LaFeO3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co3O4, Au/MnO2和 Pd/Co3O4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe2O3, LaMnO3, La0.6Sr0.4MnO3和 La2CuO4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co3O4, Au/LaCoO3, Au/La0.6Sr0.4MnO3和 AuPd/Co3O4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等 VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了 VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高 VOCs的消除效率.  相似文献   

10.
综述了近年来国内外用于消除挥发性有机物的有序多孔金属氧化物催化剂的研究进展, 主要包括有序多孔氧化铈、 氧化锰、 氧化钴、 氧化铁、 氧化铬和钙钛矿型氧化物及其负载贵金属或过渡金属氧化物. 讨论了这些催化剂对典型挥发性有机物氧化的催化性能, 并展望了新型高效消除挥发性有机物催化剂的研发前景及技术发展趋势.  相似文献   

11.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

12.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

13.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

14.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

15.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

16.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

17.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

18.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

19.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

20.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号