首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
为进一步研究石灰-玄武岩纤维改性膨胀土强度的特性并确定其最佳添加量,将石灰、玄武岩纤维按照不同比例掺入膨胀土中进行室内试验。试验结果表明,在相同击实功作用下,随着石灰添加量的增加,膨胀土的最大干密度逐渐减小,最优含水率逐渐增大,塑性指数呈减小趋势;随着玄武岩纤维添加量的增加,膨胀土由脆性破坏逐渐过渡到塑性破坏;随着石灰-玄武岩纤维添加量的增加,能有效降低膨胀土的膨胀力,石灰和纤维的最佳添加量分别为6%、0.3%;在不同围压下,石灰-玄武岩纤维均可有效提高膨胀土的延性。  相似文献   

2.
为研究石灰改良膨胀土重塑后的工程特性,进行了素土、石灰改良膨胀土及重塑石灰改良膨胀土在90%、93%及95%压实度下土体的固结试验及直剪强度试验,对比分析了3种土体的工程特性。试验结论显示:重塑石灰改良膨胀土的压缩系数α_(1-2)介于素土与石灰改良膨胀土之间,是石灰改良膨胀土的1.6~1.7倍,是素土的0.7~0.8倍。在上覆荷载较小时,重塑石灰改良膨胀土的抗剪强度及压缩性能接近于素土;在上覆荷载较大时,重塑石灰改良膨胀土的抗剪强度及压缩性能接近于石灰改良膨胀土。  相似文献   

3.
李艳林  巫益  许汉华  方芳 《江西建材》2023,(12):47-49+52
文中以红河蒙自市某工程膨胀土为研究对象,对其进行了素土,石灰、粉煤灰以及水泥改良膨胀土的路用特性试验研究。结果表明,石灰、粉煤灰、水泥三种改良膨胀土的最大干密度均随着掺量的增加而逐渐减小,石灰和水泥改良的膨胀土最佳含水率随着掺量增加而增大,粉煤灰改良的膨胀土最佳含水率则随着掺量增加而减小。三种改良膨胀土的膨胀量均随掺入比的增大而减小,CBR值则与之相反。从改良后减小的膨胀量来看,改良效果由好到差依次是粉煤灰、石灰、水泥;从提高CBR值上看,水泥效果更好,其次是石灰,粉煤灰效果最差。  相似文献   

4.
《Planning》2017,(6)
采用室内三轴试验,研究了生物酶、石灰、水泥改良膨胀土的应力-应变曲线及强度特性,探讨了生物酶、石灰、水泥含量对改良膨胀土强度影响的变化规律。试验结果表明:1)改良膨胀土的偏应力随轴向应变的增加而增加,掺生物酶改性膨胀土的试验曲线表现为硬化型,掺石灰、水泥改性膨胀土试验曲线表现为软化型;2)掺生物酶、石灰、水泥能提高膨胀土体承受偏应力的强度,相同围压下,掺1∶300(酶与水的质量比)生物酶试样承受的偏应力最大,掺7%的石灰次之,最后为掺9%的水泥;3)通过比较分析强度提高系数R可知,掺1∶300(酶与水的质量比)生物酶对提高膨胀土抗剪强度效果最佳。以上研究结果为娄益高速处置膨胀土路基提供量化资料,同时也为其他膨胀土工程提供参考。  相似文献   

5.
掺电石灰对膨胀土物理力学性质的影响   总被引:1,自引:0,他引:1  
通过室内试验,着重研究掺电石灰对膨胀土的压缩特性、抗剪强度、抗压强度等相关指标的影响,探讨了利用电石灰改良膨胀土的可行性,结果表明:往膨胀土中掺入电石灰可以降低其压缩性,提高抗剪强度和粘聚力,增强无侧限抗压强度,有利于膨胀土强度特性的提高。  相似文献   

6.
外围石灰改良包边,中芯膨胀土填筑形成的包边方案可解决平顶山地区道路建设过程中的膨胀土难题。为了检验材料强度与寻找合适的石灰掺量,对素土开展击实试验,发现在最佳含水率12%附近得到最大干密度与无侧限抗压强度。按照0、2%、4%、6%的石灰掺量制作试件,进行干法不浸水CBR实验,发现4%掺量下材料CBR数值最大为44%,素土CBR数值最小为31%,对0和4%掺量试件进行常规浸水CBR实验,数值分别为2.6%、3.7%;研究表明四周4%石灰掺量改良包边,中芯直接填筑素土,满足当地高等级道路下路堤填筑时的CBR要求,为实际工程提供参考。  相似文献   

7.
结合沪汉蓉通道武康二线铁路路基膨胀土改良试验研究,通过室内试验研究了石灰改良膨胀土的工程特性。液、塑限及膨胀率试验表明掺入石灰可显著降低其塑性及膨胀性。通过强度特性试验证明:改良土强度随龄期的增长和石灰掺合量的增加而增大;石灰掺入膨胀土可以有效提高其水稳定性。  相似文献   

8.
《Planning》2014,(26)
利用阳离子聚丙烯酰胺-粉煤灰掺和物改良膨胀土。试验研究了阳离子聚丙烯酰胺-粉煤灰掺和物改良膨胀土的抗剪切强度,结果表明,掺和物可以有效增强膨胀土的抗剪切强度。当膨胀土中阳离子聚丙烯酰胺含量超过0.3%时,膨胀土的粘聚力增幅最大。膨胀土中阳离子聚丙烯酰胺含量既定情况下,随着添加粉煤灰量的增大,掺入6%-8%粉煤灰时,膨胀土的抗剪切强度存在一个最大值。确定出了改良膨胀土时,添加0.3%-0.5%的阳离子聚丙烯酰胺以及6%-8%的粉煤灰为宜(百分比为质量干重比)。  相似文献   

9.
不同改良材料对膨胀土工程性能影响的对比试验   总被引:1,自引:1,他引:0  
以石灰、水泥、粉煤灰、风化砂四种材料改良同一种膨胀土,掺入不同的比例后,进行室内试验研究。试验表明:四种材料的掺入均能改善膨胀土的抗剪强度,其中掺水泥能大幅度提高膨胀土的黏聚力和内摩擦角;其次,掺石灰也能显著提高膨胀土的抗剪强度指标;掺入风化砂和粉煤灰后,膨胀土的黏聚力会有所下降,内摩擦角会随着掺量的增加,先逐渐增大后缓慢降低。掺入这四种材料均能有效改善膨胀土的膨胀特性,从对有荷膨胀率的影响效果来看,掺石灰对抑制膨胀效果最好,其次是水泥,而后是粉煤灰和风化砂。  相似文献   

10.
以石灰、水泥、粉煤灰、风化砂四种材料改良同一种膨胀土,掺入不同的比例后,进行室内试验研究。试验表明:四种材料的掺入均能改善膨胀土的抗剪强度,其中掺水泥能大幅度提高膨胀土的黏聚力和内摩擦角;其次,掺石灰也能显著提高膨胀土的抗剪强度指标;掺入风化砂和粉煤灰后,膨胀土的黏聚力会有所下降,内摩擦角会随着掺量的增加,先逐渐增大后缓慢降低。掺入这四种材料均能有效改善膨胀土的膨胀特性,从对有荷膨胀率的影响效果来看,掺石灰对抑制膨胀效果最好,其次是水泥,而后是粉煤灰和风化砂。  相似文献   

11.
为研究砂石改良膨胀土工程特性随砂石粒径的变化规律,通过直剪试验、收缩试验、膨胀力试验、无荷膨胀率试验,分析了膨胀土抗剪强度、胀缩特性与砂石掺量、砂石粒径的关系。试验结果表明:随着砂石掺量增加,膨胀土的抗剪强度有所提高,内摩擦角增大,黏聚力先增大后减小,膨胀土的胀缩特性逐渐改善,相同掺量下,掺砂石的粒径越大,膨胀土的黏聚力和内摩擦角越大,胀缩特性改善效果越明显,掺入砂石粒径越大,胀缩特性得到改善并趋于稳定的砂石掺量越小,最优砂石掺量逐渐减小。建议不同粒径砂石改良膨胀土的最优掺量分别为:风化细砂40%,风化中砂30%,碎石25%。掺大粒径的砂石改良膨胀土更加经济有效。  相似文献   

12.
以南京溧水地区公路膨胀土为研究对象,首先通过液塑限试验和击实试验得到改良土最大干密度和最佳含水率与石灰掺量的关系。其次通过三轴压缩试验分别研究了改良土的力学性质与石灰掺量、纤维掺量的关系,试验结果表明,石灰掺量6%的改良土强度是素土的3倍,而纤维能够较大提升改良土的延性,而强度提升较小。最后对改良土进行无侧限抗压强度试验,改良土(石灰掺量6%、纤维掺量0.3%)的强度是素土的5.7倍。  相似文献   

13.
选取云南省典型的湖相沉积型膨胀土土样,以石灰为改良剂对其进行化学改良,并对改良的膨胀土进行三轴剪切试验,结果表明,石灰改性土中石灰的最优掺量为5.5%,为工程实践中膨胀土改良提供了一定的依据。  相似文献   

14.
攀西地区特有的昔格达土天然强度较高,但遇水易膨胀、崩解、软化。石灰加竹筋改良后的昔格达土强度大幅提高。但饱和度的不同将严重影响其强度,通过对17个昔格达加筋三七灰土试样养护28天后,按天然饱和、浸水3小时、浸水6小时、浸水9小时、真空抽气饱和进行室内三轴试验,研究石灰加竹筋改良昔格达土的抗剪强度,发现随着饱和度的增大,粘聚力降低明显,内摩擦角逐渐减小。  相似文献   

15.
膨胀土路基石灰改良试验研究   总被引:1,自引:0,他引:1  
膨胀土是一种特殊性质的土,不同的掺灰率对膨胀土性质的改变也不同。文章对膨胀土进行掺石灰试验研究,探讨掺石灰对膨胀土的胀缩性与强度的影响规律,对比分析了膨胀土改良后的最佳含水量、最大干密度、无侧限抗压强度、CBR等指标与不同掺灰率之间的关系,确定了膨胀土的最佳掺灰率,试验结果对同类工程具有参考意义。  相似文献   

16.
对安阳地区膨胀土进行了改性试验和动力特性试验研究,改性剂采用石灰按不同的比例进行试验。通过不同石灰掺量下改性土的常规试验、强度试验和动力三轴试验研究。得出改性后的土样其工程特性和力学强度指标都有了较大幅度的提高。结合具体施工条件,石灰掺量可取6%~7%,最佳含水量取15%~18%,最大干容重取18.2kN/m3,压实度大于95%可满足工程要求。  相似文献   

17.
 为探讨荆门原状、压实、石灰改良膨胀土的非饱和抗剪强度与土–水特征曲线(SWCC)的相关关系,利用Fredlund-Xing模型对3种膨胀土的SWCC试验数据进行非线性拟合,获得相应模型参数;利用Fredlund公式(1996年)对3种膨胀土控制吸力下的固结排水剪三轴压缩试验抗剪强度成果进行相关分析。分析结果表明:(1) 使用Fredlund-Xing模型拟合3种膨胀土SWCC试验数据的效果均较好。(2) 荆门原状、压实、石灰改良膨胀土的进气值分别为210,68和18 kPa;石灰改良膨胀土的持水能力(水稳定性)最强,压实膨胀土次之,原状膨胀土最弱;3种膨胀土的残余吸力可均取为3 000 kPa。(3) 3种膨胀土的有效内摩擦角(j´)和与基质吸力相应的内摩擦角(jb)均非常数;j´与基质吸力相关,jb与基质吸力和应力状态均相关,这意味着Mohr-Coulomb破坏包面是双向弯曲的。(4) 使用Fredlund公式,能够在较大的吸力范围内较好地预测荆门膨胀土的非饱和抗剪强度,原状、压实、石灰改良膨胀土的土性参数κ分别为2.4,2.7及3.4。(5) 预测值与实测值间存在差别的主要原因是Fredlund公式本身未考虑到jb与应力状态相关,若要考虑该因素,可将应力状态对SWCC的影响引入到Fredlund公式中。  相似文献   

18.
为探究生物酶改良膨胀土压缩特性,通过一维固结试验,研究了生物酶、石灰、水泥改良膨胀土体孔隙比、压缩系数、单位沉降量与荷载变化规律。探讨了固结压力对生物酶、石灰、水泥改良膨胀土体压缩特性的影响。试验结果表明:生物酶、石灰、水泥改良膨胀土表现出不同的压缩性,主要反映在压缩曲线与压缩系数上;掺生物酶、石灰、水泥都能改善膨胀土的压缩性,其中,生物酶配比为1∶300改良膨胀土的压缩性最小;改良膨胀土的单位沉降量与荷载的关系可用幂函数来表示:si=bpai。  相似文献   

19.
将生石灰粉与西藏邦铺矿区中所采取的碎石土混合,分别制成灰土比为3%,5%,7%和9%的改良碎石土,进行大型直接剪切试验,研究石灰改良碎石土的剪切强度特性和改良效果。试验发现:在碎石土中掺入石灰降低了土样的含水率、增大了土样的咬合摩擦和黏聚强度,从而增大碎石土的强度;掺量9%石灰改良碎石土效果最为明显。最后结合室内试验结果与理论公式,采用 FLAC3D建立的数值模型分析西藏邦铺矿区北东部剖面碎石土边坡在石灰改良碎石土层、锚杆护坡、抗滑桩护坡及以上方法联合护坡的治理效果。结果表明:石灰改良碎石土层、锚杆加固、抗滑桩联合护坡后,最大水平位移明显变小,没有贯通的塑性区,且有效地减小了下滑力,联合护坡方法较前3种单独采取某种方法时能更有效治理边坡。  相似文献   

20.
纤维柔性加筋处治膨胀土病害是一种有待进一步研究发展的新型技术方法。为此采用特种纤维对膨胀土特性进行改良,并对其改良特性进行试验研究,采用不同长度、不同掺量的超高分子量聚乙烯纤维,将其掺入到膨胀土中进行无荷膨胀率、快速直剪和变水头渗透试验。试验结果表明:超高分子量聚乙烯纤维的掺入能有效抑制膨胀土的膨胀性并降低它的无荷膨胀率,同时还能大幅提高膨胀土的抗剪强度,当超高分子量聚乙烯纤维的掺入量超过0.1%时,加筋土的渗透系数则会大幅上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号