首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
We study spectral multipliers of right invariant sub-Laplacians with drift on a connected Lie group G. The operators we consider are self-adjoint with respect to a positive measure , whose density with respect to the left Haar measure λG is a nontrivial positive character of G. We show that if p≠2 and G is amenable, then every spectral multiplier of extends to a bounded holomorphic function on a parabolic region in the complex plane, which depends on p and on the drift. When G is of polynomial growth we show that this necessary condition is nearly sufficient, by proving that bounded holomorphic functions on the appropriate parabolic region which satisfy mild regularity conditions on its boundary are spectral multipliers of . Work partially supported by the EC HARP Network “Harmonic Analysis and Related Problems”, the Progetto Cofinanziato MURST “Analisi Armonica” and the Gruppo Nazionale INdAM per l'Analisi Matematica, la Probabilità e le loro Applicazioni. Part of this work was done while the second and the third author were visiting the “Centro De Giorgi” at the Scuola Normale Superiore di Pisa, during a special trimester in Harmonic Analysis. They would like to express their gratitude to the Centro for the hospitality.  相似文献   

4.
Let G = N ? A, where N is a stratified group and A = ? acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G, and their sum is a sub-Laplacian Δ on G. We prove a theorem of Mihlin–Hörmander type for spectral multipliers of Δ. The proof of the theorem hinges on a Calderón–Zygmund theory adapted to a sub-Riemannian structure of G and on L1-estimates of the gradient of the heat kernel associated to the sub-Laplacian Δ.  相似文献   

5.
We discuss dimension theory in the class of all topological groups. For locally compact topological groups there are many classical results in the literature. Dimension theory for non-locally compact topological groups is mysterious. It is for example unknown whether every connected (hence at least 1-dimensional) Polish group contains a homeomorphic copy of [0,1]. And it is unknown whether there is a homogeneous metrizable compact space the homeomorphism group of which is 2-dimensional. Other classical open problems are the following ones. Let G be a topological group with a countable network. Does it follow that dimG=indG=IndG? The same question if X is a compact coset space. We also do not know whether the inequality dim(G×H)dimG+dimH holds for arbitrary topological groups G and H which are subgroups of σ-compact topological groups. The aim of this paper is to discuss such and related problems. But we do not attempt to survey the literature.  相似文献   

6.
7.
8.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

9.
We consider a family of real NA groups with rank two, and we prove that these groups have sub-Laplacians with differentiable Lp functional calculus for all p?1.  相似文献   

10.
In a recent paperIan Inglis gives some sufficient conditions for a function on a totally disconnected compact Abelian group to be anL p Fourier multiplier. His proof depends on an interpolation theorem ofE. M. Stein. In this note we prove a generalization ofInglis' theorem. Our result is deduced from a factorization theorem, the proof of which is elementary, and a standard multiplier theorem.This work was done while the second-named author held a visiting appointment at the University of Washington. He wishes to thank ProfessorsE. Hewitt andR. R. Phelps for making the visit possible.  相似文献   

11.
We construct a family of simply connected 2-step nilpotent Lie groups of higher rank such that every geodesic lies in a flat. These are as Riemannian manifolds irreducible and arise from real representations of compact Lie algebras. Moreover we show that groups of Heisenberg type do not even infinitesimally have higher rank. Received: 2 July 2001 / Revised version: 19 October 2001  相似文献   

12.
We continue in this paper the study of locally minimal groups started in Außenhofer et al. (2010) [4]. The minimality criterion for dense subgroups of compact groups is extended to local minimality. Using this criterion we characterize the compact abelian groups containing dense countable locally minimal subgroups, as well as those containing dense locally minimal subgroups of countable free-rank. We also characterize the compact abelian groups whose torsion part is dense and locally minimal. We call a topological group G almost minimal if it has a closed, minimal normal subgroup N such that the quotient group G/N is uniformly free from small subgroups. The class of almost minimal groups includes all locally compact groups, and is contained in the class of locally minimal groups. On the other hand, we provide examples of countable precompact metrizable locally minimal groups which are not almost minimal. Some other significant properties of this new class are obtained.  相似文献   

13.
14.
This paper is concerned with an extension of the Charshiladze-Lozinski theorem to compact (not necessarily abelian) topological groups G and symmetric compact homogeneous spaces G/H. The proof is based on a generalized Marcinkiewicz — Berman formula. As an application, some divergence theorems for expansions of continuous resp. integrable complex — valued functions on Euclidean spheres and projective spaces in series of polynomial functions on these spaces are established.  相似文献   

15.
A new fractal dimension: The topological Hausdorff dimension   总被引:1,自引:0,他引:1  
We introduce a new concept of dimension for metric spaces, the so-called topological Hausdorff dimension. It is defined by a very natural combination of the definitions of the topological dimension and the Hausdorff dimension. The value of the topological Hausdorff dimension is always between the topological dimension and the Hausdorff dimension, in particular, this new dimension is a non-trivial lower estimate for the Hausdorff dimension.  相似文献   

16.
We use the methods of Bazzoni and Muñoz (Trans Am Math Soc 364:1007–1028, 2012) to give a classification of 7-dimensional minimal algebras, generated in degree 1, over any field ${\mathbf{k}}$ of characteristic ${{\rm char}(\mathbf{k})\neq 2}$ , whose characteristic filtration has length 2. Equivalently, we classify 2-step nilpotent Lie algebras in dimension 7. This classification also recovers the real homotopy type of 7-dimensional 2-step nilmanifolds.  相似文献   

17.
In this note we announce L p multiplier theorems for invariant and noninvariant operators on compact Lie groups in the spirit of the well-known Hörmander-Mikhlin theorem on ? n and its versions on the torus $\mathbb{T}^n$ . Applications to mapping properties of pseudo-differential operators on L p -spaces and to a priori estimates for nonhypoelliptic operators are given.  相似文献   

18.
19.
Summary In this paper we give a criterion for boundedness on the Hardy spaces for functions M() of the sublaplacian on a stratified group. The criterion requires that the function M satisfies locally a Besov condition. The proof is based on the atomic and molecular characterization of Hardy spaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号