共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
针对印染废水高有机物、高色度、水质水量变化大的特点,研究开发处理效率高,适应性强的印染废水处理集成工艺,具有重要的现实意义 采用多相催化臭氧化工艺对印染废水进行试验研究.结果表明:采用浸渍法制备出的负载型铁锰氧化物催化剂FexOy+MnOx/AC较单组分催化剂具有更好的活性及稳定性;经多相催化臭氧氧化处理后,印染废水COD、氨氮、总磷、色度去除率分别为81.7%、90.2%、93.4%、99.1%,达到较好的去除效果. 相似文献
4.
5.
6.
废润滑油的再生利用可以减少环境污染并有利于减缓我国石油资源的不足。对国内外废润滑油管理政策以及再生利用技术现状进行了梳理,分析总结了废润滑油再净化、再精制和再炼制过程,对典型技术如沉淀法、蒸馏、溶剂精制、加氢精制等进行了介绍;并调研了我国目前废润滑油处理处置企业利用技术分布,按照中间环节和精制过程,分析目前废润滑油再生技术使用现状。我国目前已经建立了较为完善的废润滑油管理制度体系和相关标准规范,但存在对非工业源废润滑油监管不到位,部分标准规范制定年代久远等问题。调研显示,我国废润滑油再生行业中间环节采用常压蒸馏、减压蒸馏(精馏)的企业占47%;技术较为先进的分子蒸馏和薄膜蒸发也有较多企业开始使用。对于精制阶段,采用溶剂精制的企业最多,占26%;加氢精制工艺技术比较先进,但设备投资高,目前采用的企业还较少。 相似文献
7.
机车废润滑油再生新工艺的研究 总被引:1,自引:0,他引:1
本研究提出了一条废油再生的新工艺。采用乙醇胺做凝聚剂,配合离心分离和减压蒸馏技术处理废润滑油,即凝聚脱沥青-离心油渣分离-蒸馏脱水,轻油-白土吸附。其特点是减少了废气,废渣环境污染,提高了油的回收效率。 相似文献
8.
机油和润滑油在机器和设备中工作时 ,由于与金属接触并在压力、温度、电磁场、光及其他因素的影响下 ,长期受到剪切作用 ,会产生一系列的物理和化学变化。随着使用时间的延长 ,油中的沥青胶态物质、碳黑及有机酸、盐、水、金属末及其他外来杂质逐渐聚集 ,导致油的物化性能下降 ,以至无法使用。过去 ,对废润滑油、废机油的利用主要是作燃料 ,现在 ,由于再生技术的推广 ,大量的废机油、废润滑油被再生加工 ,重复利用 ,节约了资源。下面就将这一技术作一介绍。1 物理方法所用设备 :聚氯乙烯容器或不锈钢容器 ,离心机或甩干机 (如有塑料部件 ,… 相似文献
9.
10.
11.
12.
废硅藻土在小城镇印染废水预处理中的应用 总被引:2,自引:0,他引:2
随着小城镇的发展,多种行业的企业不断引进,逐渐形成了城镇的多产业型格局。青岛地区周边村镇的印染企业较多,产生的废水色度较大,这对适合于村镇的土地处理法会产生很大的影响,为了保证土地处理系统的出水水质,需要对进入土地处理系统的印染废水进行一定的预处理。文章通过对啤酒厂用于过滤后的废硅藻土对印染废水的脱色实验,以期找到一种较经济的小城镇印染废水预处理方法,同时实现废物再利用。实验研究表明,废硅藻土仍有吸附能力,具有再利用价值。它对实验选取的5种染料废水脱色效率均在50%以上;对阳离子染料脱色效果达到90%,效果最佳。因此废硅藻土在部分印染废水处理中可以替代常规混凝剂,大大降低处理成本。可以预测废硅藻土在印染废水预处理中的应用有很大潜力。 相似文献
13.
14.
臭氧用于污水处理方面具有反应迅速、无二次污染等特点,但反应速度较慢。通过催化剂的作用,可以弥补臭氧的不足。本文介绍了催化臭氧氧化技术近年来的发展。 相似文献
15.
前言烧碱碱液广泛用于含硫醇和硫化氢的液态烃(各种油)和气态烃(天然气,油田气和炼广气等)的脱硫,脱硫效率都很高。脱硫后的废碱液的再生问越直接关系到碱液再脱硫的效率、脱硫的成本和环境保护问题。过去,工业上普遍采用的废碱液再生方法是加热水蒸汽汽提再生。该法需要 相似文献
16.
17.
臭氧高级氧化技术预处理染料废水的试验研究 总被引:1,自引:0,他引:1
研究单独臭氧氧化和过氧化氢/臭氧联合作用对去除难降解染料废水CODcr、色度,提高可生化性的效果,并考察不同pH值、不同初始污染物浓度、H2O2投加量等对染料废水活性艳红X-3B处理效果的影响。实验结果表明:臭氧氧化对CODcr去除率达到50.00%,对色度的去除率接近100%,B/C由原水的0.0 507上升到0.2 768;废水在pH值为11时处理效果最好;而过氧化氢/臭氧联合作用的最佳摩尔比为0.6。 相似文献
18.
19.
20.
实验采用混凝-Fenton氧化预处理抗生素废水,筛选出最佳的混凝条件及氧化条件,同时对经混凝-Fenton试剂预处理后的废水与未经处理的废水按同样反应条件开展好氧生化试验。实验发现,采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复合混凝处理该废水,在pH为8,PAC与PAM的用量分别为400mg/L和12mg/L时混凝效果较好。混凝后的废水再用芬顿体系氧化,当pH为3,FeSO·47H2O投加量为0.01mol/L,H2O2/Fe2+摩尔比4:1下,反应30min时,取得了满意的结果。实验表明,采用混凝-芬顿氧化法预处理抗生素废水后,明显改善了其可生化性,为后续生化处理打下了良好的基础。 相似文献