首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The synthesis of rutile (TiO2) nanostructured materials at low temperature from TiCl4 aqueous solution was described. TiO2 coatings on polystyrene (PS) particles were prepared by layer-by-layer assembly technique. The samples were characterized by DTA-TG, SEM, XPS, TEM and XRD techniques. The experimental results showed that pure rutile-TiO2 coatings with nanocrystal structure were synthesized at 100 °C. On the surface of PS particles, sphere-type TiO2 coatings exhibited uniform shape and a narrow size distribution. The amount of TO2 (wt%) and shell thickness of particles increased with the adding of coating layers. Hollow TiO2 spheres were obtained by calcination at 450 °C. TiO2/PS with 2 coating layers showed higher degradation rate. The photocatalytic activity of hollow TiO2 spheres was higher than that of TiO2/PS.  相似文献   

2.
The work attempted to develop a kind of high temperature microwave absorption coating. The Ti3SiC2/NASICON composite coatings with different Ti3SiC2 concentrations were fabricated by atmospheric plasma spraying. The effect of Ti3SiC2 addition on phase, density, microstructure, dielectric property and microwave absorption property of as-sprayed coatings was investigated. Results show that the complex permittivity increases with increasing the content of Ti3SiC2 due to the enhanced space charge polarization, decreased porosity and increased conduction loss. When the content of Ti3SiC2 increases to 30 wt%, the coating exhibits the optimal microwave absorption property with a bandwidth (below ??5 dB) of 4.01 GHz and lowest reflection loss of ??12.4 dB at 9.63 GHz in 1.4 mm thickness. It indicates that the Ti3SiC2/NASICON composite coating can be a potential candidate for microwave absorption.  相似文献   

3.
Using electrophoretic deposition (EPD), we have produced YSZ individual ceramic coatings and YSZ/Al2O3 composite coatings for a wide range of applications in modern materials research. YSZ and Al2O3 nanopowders were prepared by high-energy physical dispersion techniques, namely, by a laser evaporation–condensation process and electroexplosion of wire, respectively. Stable nonaqueous suspensions for the EPD process have been prepared using YSZ and Al2O3 nanopowders with an average particle size of 11 and 22 nm, respectively. The YSZ/Al2O3 composite coating produced by sintering at 1200°C has been shown to have higher density in comparison with the YSZ individual coating produced at the same temperature. X-ray diffraction characterization showed that the YSZ/Al2O3 composite coating consisted of two crystalline phases: α-Al2O3 (corundum) (42 wt %) and cubic ZrO2〈Y2O3〉 (58 wt %). Quantitative analysis of electron micrographs of the surface of the films showed that the YSZ individual coating produced by sintering at 1200°C had a loose structure and contained pores (9%), as distinct from the composite coating, which had a dense, porefree grain structure.  相似文献   

4.
CaTi4 (PO4)6 coatings was prepared on the surface of CP (commercially pure) Titanium substrate via micro arc oxidation in a newly designed electrolyte system. The preparation method –micro arc oxidation, as well as its discharge characterization was described and studied. The phases, morphology, chemical composition of the coatings were characterized by XRD, EDX and SEM analysis respectively. The results show: the main phase of the prepared coating was CaTi4 (PO4)6 which is a bioactive coating material, the morphology of the coating was rather coarse and not like that of traditional MAO coating which was full of pores. Also the samples prepared in different electrolyte systems were studied and compared.  相似文献   

5.
K2Ti6O13/TiO2 bio-ceramic coatings are prepared successfully by micro-arc oxidation on titanium substrate in pure KOH electrolyte solution. The coating is prepared at various applied current density (150–500 mA/cm2) and in KOH electrolyte with different concentrations (0.5–1.2 mol/L). The composition and surface morphologies of coatings are strongly dependent on the applied current density and the electrolyte concentration. On the condition of lower current density and electrolyte concentration, K2Ti6O13 phase almost cannot be formed. The phase is mainly composed of rutile and K2Ti6O13 with increasing current density and electrolyte concentration. The surface morphologies are composed of whiskers and porous structures. The ability of K2Ti6O13/TiO2 bio-ceramic films inducing apatite deposition is evaluated by soaking it in biological model fluids. The results show the K2Ti6O13/TiO2 bio-ceramic coatings possess excellent capability of inducing bone-like apatite to deposit.  相似文献   

6.
The regularities of the formations of nitride coatings based on the base of high entropy multicomponent alloy Ti30Zr25Nb20Hf15Ta10Y5 in the initial state without nitrogen and in nitrogen. The initial material of the alloy is solid solution on the base of the bcc-lattice. At the further sputtering of sample in the atmospheres with different contents of nitrogen the coating forms on the base of fcc-lattice. At the optimal conditions of the sputtering the nitride coating on the base of the highly entopic multicomponent alloy has the hardness at the level of 50 GPa and the reduced elastic modulus 350 GPa.  相似文献   

7.
Sol-gel method is important for depositing antireflective coating that allows control over thickness as well as the index of refraction. Antireflective coatings which are produced from Ta2O5 and SiO2 multi-layer thin films using sol-gel spin coating method are presented. The refractive index and the thickness are controlled by the composition and the concentration of the solution respectively. The thickness, refractive index and extinction coefficient of the films were calculated through transmission and reflection measurement by an NKD analyser. Mechanical properties of the films were checked by the cross tape test and dry sun test at 760 W/m2. The result shows that the sample heat treated at 450C for 15 min approaches a reflectance with less than 0.5% at around 840 nm.  相似文献   

8.
Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca2ZnSi2O7 coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris–HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca2ZnSi2O7 coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca2ZnSi2O7 coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.  相似文献   

9.
In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller ΔG and the more stable configuration.  相似文献   

10.
We study the electrodeposition of tertiary Alumina/Yitria/carbon nanotube (Al2O3/Y2O3/CNT) nanocomposite by using pulsed currents. The process of coating is performed in a nickel-sulfate bath and the nanostructure of the obtained compound layer is examined with the help of high-precision figure analysis of SEM nanographs. The effects of process variables, i.e., the Y2O3 concentration, treatment time, current density, and the temperature of electrolyte are experimentally investigated. Statistical methods are used to achieve the minimum wear rate and average size of nanoparticles. Finally, the percentage contributions of different effective factors are revealed, and the confirmation run showed the validity of the obtained results. It is also revealed that the wear properties of the coatings undergo significant changes if the sizes of nanoparticles change. The atomic-force microscopy (AFM) and transmissionelectron microscopy (TEM) analyses confirm the smooth surfaces and average sizes of nanoparticles in the optimal coating.  相似文献   

11.
Carbon-coating Na3V2(PO4)2F3 nanoparticles (NVPF@C NP) were prepared by a hydrothermal assisted sol–gel method and applied as cathode materials for Na-ion batteries. The as-prepared nanocomposites were composed of Na3V2(PO4)2F3 nanoparticles with a typical size of ~?100 nm and an amorphous carbon layer with the thickness of ~?5 nm. Cyclic voltammetry, rate and cycling, and electrochemical impedance spectroscopy tests were used to discuss the effect of carbon coating and nanostructure. Results display that the as-prepared NVPF@C NP demonstrates a higher rate capability and better long cycling performance compared with bare Na3V2(PO4)2F3 bulk (72 mA h g?1 at 10 C vs 39 mA h g?1 at 10 and 1 C capacity retention of 95% vs 88% after 50 cycles). The remarking electrode performance was attributed to the combination of nanostructure and carbon coating, which can provide short Na-ion diffusion distance and rapid electron migration.  相似文献   

12.
Thin CrN x coatings are often used as protective coatings for steel. In these applications, coated parts might be subjected to high temperatures that can alter the coatings structural and mechanical properties. In this work, the properties of nanometric CrN x coatings deposited by reactive magnetron sputtering on AISI 304L stainless steel were studied by transmission electron microscopy, glazing incident X-ray diffraction, Atomic Force Microscopy, and nanoindentation. The effect of annealing, both in air and vacuum, on the coating crystal structure, surface morphology and hardness were also investigated. It was found that annealing in vacuum-induced phase transformation from CrN to Cr2N, while after annealing in air only Cr2O3 phase was present. Surface roughness did not increase for annealing in vacuum. CrN x coatings with higher Cr2N phase content showed lower roughness increase for annealing in air. Measured hardness was >10 GPa for as-deposited CrN x samples. An increase in hardness up to >20 GPa was found for vacuum-annealed samples.  相似文献   

13.
We report the critical current of superconducting Nb3Sn coatings produced by electrocodeposition from molten salts and its anisotropy in transverse magnetic fields. The anisotropy is quantified by the ratio of the critical currents measured in magnetic fields parallel and normal to the coating surface, k. The effect of doping with tantalum and nitrogen on the microstructure, critical current, and anisotropy factor k of Nb3Sn coatings is examined. The k of the undoped and tantalum-doped coatings ranges from 0.4 to 1.0, and that of the nitrogen-doped coatings, from 0.4 to 1.4. The critical current anisotropy is interpreted in terms of the microstructure of the coatings.  相似文献   

14.
A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 nanostructured coatings utilizing a commercially available nanopowder as the feedstock. The coatings were characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. Photocatalytic activity was evaluated as a rate constant of decomposition reaction of methylene blue (MB) determined from the changes of relative concentration of MB with UV irradiation time. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases viz. anatase and rutile, with different phase contents and crystallite sizes. A high anatase content of 80% by volume was achieved at 0·00015, fuel-to-oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. Photocatalytic activity evaluation results indicated that all the TiO2 coatings are effective to degradation MB under UV radiation and their activities differ in different spray conditions. It is found that fuel flow rate strongly influenced on phase transformation of anatase to rutile and by optimizing the rate which can promote structural transformation and grain coarsening in coating and improving photocatalytic activity.  相似文献   

15.
We have prepared and characterized lithium titanate-based anode materials, Li4Ti5O12/C and Li4Ti5O12/C/Ag, using polyvinylidene fluoride as a carbon source. The formation of such materials has been shown to be accompanied by fluorination of the lithium titanate surface and the formation of a highly conductive carbon coating. The highest electrochemical capacity (175 mAh/g at a current density of 20 mA/g) is offered by the Li4Ti5O12-based anode materials prepared using 5% polyvinylidene fluoride. The addition of silver nanoparticles ensures a further increase in electrical conductivity and better cycling stability of the materials at high current densities.  相似文献   

16.
Epitaxial layers of NaAl3(BO3)4 (NAB) and YAl3(BO3)4〈Yb〉 (YAB〈Yb〉) containing up to 10 at % Yb have been grown by liquid-phase epitaxy on YAB substrates. Their growth kinetics have been studied at relative supersaturations of the high-temperature solution from 2 × 10?2 to 16 × 10?2. The ytterbium concentration in YAB〈Yb〉 has been shown to vary little during the epitaxial process. Near the edges of the substrate, the surface morphology of the layers is complicated by vicinals, which have a spiral form in the case of YAB〈Yb〉. On \(\{ 10\overline 1 1\} \) YAB substrates, homogeneous single-crystal NAB films have been grown.  相似文献   

17.
Polycrystalline sample of Ba3Sr2DyTi3V7O30 was prepared at 950°C using a high-temperature solid-state reaction technique. X-ray structural analysis indicated the formation of a single-phase orthorhombic structure with lattice parameters: a = 12·2719 (39) Å, b = 8·9715(39) Å and c = 19·7812(39) Å. Microstructural study showed densely packed uniform distribution of grains over the surface of the sample. The a.c. impedance plots were used as tools to analyse the electrical response of the sample as a function of frequency at different temperatures (30–500°C). These plots revealed the presence of grain boundary effect, from 200·C onwards. Complex impedance analysis showed non-Debye type of dielectric relaxation. The Nyquist plots showed the negative temperature coefficient of resistance character of Ba3Sr2DyTi3V7O30. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is the same, and hence the relaxation process may be attributed to the same type of charge carrier.  相似文献   

18.
Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.  相似文献   

19.
Implant infections remain feared and severe complications after total joint arthroplasty. The incidence of multi-resistant pathogens, causing such infections, is rising continuously, and orthopaedic surgeons are confronted with an ever-changing resistance pattern. Anti-infectious surface coatings aim for a high local effective concentration and a low systemic toxicity at the same time. Antibacterial efficacy and biomechanical stability of a novel broad-spectrum anti-infectious coating is assessed in the present study. Antibacterial efficacy of a sol–gel derived titanium dioxide (TiO2) coating for metal implants with and without integrated copper ions as antibiotic agent was assessed against methicillin resistant Staphylococcus aureus (MRSA 27065). Both bacterial surface adhesion and growth of planktonic bacteria were assessed with bare and various TiO2-coated Ti6Al4V metal discs. Furthermore, bonding strength of the TiO2 surface coating, using standard testing procedures, as well as surface roughness were determined. We found a significant reduction of the bacterial growth rate for the coatings with integrated copper ions, with highest reduction rates observed for a fourfold copper TiO2-coating. Pure TiO2 without integrated copper ions did not reduce bacterial growth compared to uncoated Ti6Al4V. The coating was not detached from the substrate by standard adhesive failure testing, which indicated an excellent durability of the implant coating. The TiO2 coating with integrated copper ions could offer a new strategy for preventing implant-associated infections, with antibacterial properties not only against the most common bacteria causing implant infections but also against multiresistant strains such as MRSA.  相似文献   

20.
Single-layer antireflective coatings, produced by sol-gel method on soda-lime glass substrates, were studied. Optimal parameters of the silica sols synthesis and coating procedure of the antireflective coatings based on SiO2 nanoparticles on soda-lime glasses for producing composite glasses with high optical transmittance within the visible range of wavelengths were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号