首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A polyaniline/titanium nitride (PANI/TiN) nanotube hybrid was prepared and used for an electrochemical supercapacitor application. Firstly, the well-aligned TiN nanotube array was prepared by anodization of titanium foil and subsequent nitridation through ammonia annealing. Then, PANI was deposited into TiN nanotube through the electrochemical polymerization process. The obtained PANI/TiN nanotube hybrid had an ordered porous structure. A high specific capacitance of 1,066 F g?1 was obtained at the charge–discharge current density of 1 A g?1 when only the mass of PANI was considered. The specific capacitance can even achieve 864 F g?1 at 10 A g?1 and still keep 93 % of the initial capacity after 200 cycles. An aqueous supercapacitor, consisting of two symmetric PANI/TiN nanotube hybrid electrodes and 1.0 M H2SO4 electrolyte solution, showed the specific capacitance of 194.8 F g?1, energy density of 9.74 Wh kg?1, and power density of 0.3 kW kg?1.  相似文献   

2.
Biochar, a by-product of woody biomass pyrolysis, is investigated as a renewable and low-cost carbon-based electrode material for electric double layer (EDL) applications. To increase the surface area and porosity of the biochar chemical (7 M KOH) and thermal (at 675 and 1,000 °C, respectively) activation treatments are applied. The thermo-chemically activated biochar samples are investigated by a combination of physico-chemical surface characterization and electrochemical methods to reveal the relationship between the activation process variables, the resulting porous carbon structural features and EDL capacitance. For electrochemical testing, the activated biochar is sprayed onto Ni mesh current collectors with or without Nafion® as binder. Based on cyclic voltammetry experiments in 0.1 M NaCl–0.1 M NaOH a maximum EDL capacitance of 167 F g?1 is obtained for the activated biochar electrode prepared at 675 °C. The latter capacitance is about 50 times higher than the EDL capacitance of a Vulcan XC-72 electrode prepared and tested under identical conditions. The activated biochar electrodes show also promising galvanostatic charge/discharge behavior and electrical conductivities up to 0.058 S cm?1 indicating suitability for EDL-type applications.  相似文献   

3.
Polyaniline salts containing sulfuric acid and cetyltrimethylammonium sulfate dopants were prepared by aqueous (PANI-Aq), emulsion (PANI-Em), and interfacial (PANI-In) polymerization pathways using cetyltrimethylammonium peroxodisulfate as an oxidative template. Formation of polyaniline was confirmed from infrared and X-ray diffraction spectral results. Value of conductivity (15 S cm?1) of the polyaniline salt prepared by emulsion polymerization pathway was higher with that of the conventional polyaniline salt. PANI-Aq, PANI-Em, and PANI-In showed layered, flower petals, and nanorod and flower petals morphologies, respectively. These polyaniline salts were used as electrode in supercapacitor. Specific capacitance of PANI-Em, PANI-Aq, and PANI-In were 520, 484, and 474 F g?1, which were higher than the conventional PANI-H2SO4 salt (390). Energy density was 26, 24.2, and 23.6 Wh kg?1, respectively at a power density of 120 W kg?1. After 3000 charge-discharge cycles, retention in the specific capacitance values of polyaniline salts was 86% (PANI-Em), 85.4% (PANI-Aq) and 76.1% (PANI-In).  相似文献   

4.
In this paper, uniformly transition metal oxide (MoO3) nanosheets were electrochemically deposited on flexible carbon cloth (CC), and then conductive polyaniline (PANI) was orderly wrapped around their surface by electrochemical polymerization. The morphology and structure of as-obtained self-supported PANI/MoO3/CC electrode were investigated by FTIR, X-ray diffraction, Raman, scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy measurements in detail. Among all PANI/MoO3/CC electrode, the self-supported PMC-3 (deposition time of 300 s) has high specific capacitance of 841.6 F g−1 at current density of 0.5 A g−1 in the three-electrode system, having specific capacitance of 595.7 F g−1 even at 10 A g−1. Novelty, the as-assembled symmetrical capacitor is flexible and convenient with power density of 199.93 W kg−1 at the energy density of 9.69 Wh kg−1 and the energy density of 3.88 Wh kg−1 at power density of 4000 W kg−1. Thus, the electrochemical properties of the self-supported PANI/MoO3/CC electrode were significantly improved, and the self-supported electrodes are more competitive than other materials in practical application of clean energy storage systems.  相似文献   

5.
The effect of halide ion concentration on the capacitor performance was considered during this study. Iodide anion has been selected as the most profitable halide taking into account its electrochemical properties and environmental impact. Several concentrations of NaI were tested (from 0.25 to 5 mol L?1 aqueous solutions) using as electrodes two commercial activated carbons and one KOH-activated carbon. Detailed electrochemical investigation by galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy confirmed the significant impact of iodide concentration on the supercapacitor behavior. The higher concentration of iodide affected especially the performance of positive electrode; increase of iodide concentration changed the potential range of positive electrode and its capacitance increased from 119 F g?1 for 0.25 mol L?1 NaI to 475 F g?1 for 2 mol L?1 NaI solution. The electrode capacitance measured in two-electrode system at current density of 2 A g?1 ranged from 198 F g?1 for 0.25 mol L?1 NaI to 272 F g?1 for 2 mol L?1 NaI solution (capacitance expressed as average of the positive and negative electrode capacitances). It has been proved that 2 mol L?1 alkali metal iodide solution is an optimal electrolyte for the capacitor based on KOH-activated carbon. High capacitance values and perfect stability (100 % retention) of such systems have been observed during long-term galvanostatic charging/discharging (15,000 cycles). In addition, satisfactory floating tests at extended voltage range (1.2 V) were performed.  相似文献   

6.
The graphene/polyaniline (PANI) composite hydrogel was successfully prepared by a one-step hydrothermal method. The morphology and structure of the sample were characterized by digital camera, scanning electron microscopy, and Fourier transform infrared spectroscopy spectra. By combining the advantages of high conductivity of graphene and high pseudocapacitance of PANI, the composite hydrogel was taken as supercapacitor electrode material. Cyclic voltammetry and galvanostatic charge/discharge experimental results show that the composite has excellent electrochemical performance. The specific capacitance value is 258.5 F g?1 at a scan rate of 2 mV s?1 and the specific capacitance value is up to 307 F g?1 at a current density of 0.2 A g?1. The specific capacitance value can still maintain 90 % of the initial value after repeating the galvanostatic charge–discharge for 1000 cycles at a current density of 1.0 A g?1 showing good cycle stability.  相似文献   

7.
In order to increase the energy density of supercapacitor, a new kind electrode material with excellent structure and outstanding electrochemical performance is highly desired. In this article, a new type of three-dimensional (3D) nitrogen-doped single-wall carbon nanotubes (SWNTs)/graphene elastic sponge (TRGN?CNTs?S) with low density of 0.8 mg cm?3 has been successfully prepared by pyrolyzing SWNTs and GO coated commercial polyurethane (PU) sponge. In addition, high performance electrode of the honeycomb-like NiCo2O4@Ni(OH)2/TRGN-CNTs-S with core-shell structure has been successfully fabricated through hydrothermal method and then by annealing treatment and electrochemical deposition method, respectively. Benefited from 3D structural feature, the compressed NiCo2O4@Ni(OH)2/TRGN-CNTs-S electrode exhibits high gravimetric and volumetric capacitance of 1810 F g?1, 847.7 F cm?3 at 1 A g?1. The high rate performance and long-term stability was also obtained. Furthermore, an asymmetric supercapacitor using NiCo2O4@Ni(OH)2/TRGN-CNTs-S cathode and NGN/CNTs anode delivered high gravimetric and volumetric energy density of 54 W h kg?1 at 799.9 W kg?1 and 37 W h L?1 at 561.5 W L?1. In summary, an excellent electrochemical electrode with new elastic 3D SWNTs/graphene supports and binder free pseudocapacitive materials was introduced.  相似文献   

8.
Sodium-ion batteries (SIBs) is considered as a promising alternative to lithium-ion batteries. Supercapacitors (SCs) are receiving great attention for their significantly higher power density than batteries and prolonged cycle life. Herein, SIBs and SCs based on N-doped amorphous multi-size pores dominated polymeric frameworks were fabricated and examined. The enlarged interlayer spacing and multi-size-pore dominated interconnected architecture with high specific surface area, high pore volume and high N content optimize the electrochemical performance of N-PPF-20. As an anode material, N-PPF-20 exhibited a sodium ion storage capacity of 432.2 mAh g?1 at a current density of 0.05 A g?1, while maintaining a reversible capacity of 61.1 mAh g?1 at an ultrahigh current density of 20 A g?1. Additionally, a specific capacity of 158.3 mAh g?1 at 1 A g?1 was obtained after 1000 cycles, indicating an excellent cycling stability. When tested as an electrode material for SCs, N-PPF-20 delivered a high specific capacitance of 438.7 F g?1 at 0.1 A g?1, and a specific capacitance of 111.2 F g?1 was achieved even at a high current density of 10 A g?1. Meanwhile, a long-term cycling life test demonstrated a specific capacitance of 120 F g?1 at an ultrahigh current density of 10 A g?1 after 10,000 cycles.  相似文献   

9.
This paper investigates the electrochemical performance of asymmetric supercapacitors in an environmentally friendly aqueous electrolyte (1.0 mol L?1 sodium sulfate solution). The asymmetric configuration is based on the use of a highly porous carbon xerogel as active material in both the positive and negative electrodes, but the carbon xerogel loading in each electrode has been substantially modified. This configuration leads to an increase in the operational voltage window up to values of 1.8 V and consequently to a higher specific capacitance (200 F g?1) and energy density (~25 Wh kg?1). Four different mass ratios were employed (1, 1.5, 2 and 3), and the electrochemical response of the cells was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge and impedance spectroscopy. The results demonstrate that the optimal carbon mass ratio in the electrodes is about 2.0 because in these conditions the devices are able to operate with a maximum cell voltage of 1.8 V and with a high electrical efficiency.  相似文献   

10.
Graphene is considered a promising active electrode material due to a large surface area, high electronic conductivity, and chemical and mechanical stabilities for supercapacitor (SC) applications. However, the current bottleneck is the fabrication of restacking-inhibited graphene on an electrode level which otherwise loses the capability to achieve the aforementioned properties. Herein, we demonstrate the synthesis of restacking-inhibited nitrogen (N)-incorporated mesoporous graphene for high energy SCs. The melamine-formaldehyde acts as a restacking inhibitor by forming a bonding with reduced graphene oxide (RGO) through a condensation reaction and as an N precursor to be decomposed to create open pores and N sources upon heat treatment. The d-spacing increases up to 0.352 nm and the surface area is as high as 698 m2 g?1 with high mesoporosity, confirming restacking inhibition by N incorporation decomposed by melamine-formaldehyde. The restacking-inhibited RGO-based SC cells in organic electrolyte show the specific capacitance of 25.8 F g?1, the energy density of 21.8 kW kg?1 and 85% of capacitance retention for 5000 cycles, which are better than those of pristine RGO-based cells. These improved SC performances are attributed to the fast ion transport through a mesoporous channel in crumpled structure and the doping effect of N incorporation. This work provides a simple yet effective chemical approach to fabricate restacking-inhibited RGO electrodes for improved SC performances.  相似文献   

11.
Mesoporous carbon materials were prepared through atmospheric pressure impregnation at room temperature using attapulgite as hard template and maltose as carbon source. N2 absorption–desorption, X-ray diffraction, and transmission electron microscopy were used to determine the construction and morphology of the materials. The results showed that the prepared carbon materials possessed chain-layered structures whose surfaces were filled with ample nanoscale apertures. The materials also exhibited partial fasciculus with specific surface area and total pore volume of 628.6 mg?1 and 1.31 cm3 g?1, respectively. Constant current charge/discharge, cyclic voltammetry, and AC impedance tests were performed to evaluate the electrochemical performance of the materials. The constant current charge/discharge tests showed that the materials have excellent energy storage capacity. When the current density was 600 mA g?1, the specific capacitance value reached 171 F g?1. The materials showed quasi-rectangular features of typical cyclic voltammetry curve even at high scan rate (200 mV s?1), indicating that they possess excellent rate capacity. The AC impedance tests showed that the materials were typical porous electrode materials with combination resistance of 0.82 Ω. The specific capacitance of the materials reached 79 % after 1,000 constant current charge/discharge cycles, indicating that they have superior cyclic stability.  相似文献   

12.
Aniline was mixed with thiophene and oxidized by ammonium persulfate in the presence of sulfuric acid via an aqueous polymerization pathway (PAT‐AP). Aqueous polymerization was also carried by sodium lauryl sulfate surfactant, and also by interfacial and electrochemical polymerization pathways. Polymers prepared were characterized by physical, spectral, and electrochemical methods. Nanofibers (30–60 nm diameter) was obtained in the case of aqueous polymerization pathway, whereas interfacial (40–60 nm) and electrochemical polymerization pathways show particulate (500–600 nm) morphology. Polymer samples were used as electrode materials in supercapacitor. Among the four different pathways, PAT‐AP nanofibers show higher capacitance of 614 F g?1 at 1 mV s?1. The values of specific capacitance, energy, and power densities of PAT‐AP were found to be 400 F g?1, 20 W h kg?1 and 1200 W kg?1, respectively, at a current density of 2 A g?1. The retention capacitance is 78% after completion of 1000 cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42013.  相似文献   

13.
《Ceramics International》2023,49(4):5646-5656
It is not an easy way to design composite electrodes with a high concentration of the constituent. This study cleverly exploited the phase transformation of molybdenum oxide to synthesize three-dimensional carbon-based endogenous-exogenous MoO2 composites (EEC) by a two-step process. MC-15 exhibited the most outstanding electrochemical performance among EEC, with a specific capacitance up to 411.1 F g?1 in Na2SO4, due to the design of MoO2, which could be highly loaded with three-dimensional carbon. In addition, the electrode capacitance remains up to 94.1% after 5000 cycles, attributed to the synergy effect of three-dimensional carbon and molybdenum dioxide by providing an abundance of active sites for MoO2 and overcoming its stacking. In this way, the electrochemical properties of the EEC electrode are not compromised by the volume expansion during the electrochemical process. The energy density of the asymmetric supercapacitor using this material as the negative electrode and MnO2@CC is 14 W h kg?1 at a power density of 802 W kg?1, showing a significant increase in energy density over the asymmetric supercapacitor with a conventional negative electrode (activated carbon, energy density of 3.36 W h kg?1 and power density of 700 W kg?1). Its specific capacitance remained 84.9% after 2500 cycles. In addition, an overpotential of only 348 mV was required to drive oxygen evolution in alkaline electrolytes with a Tafel slope as low as 88.7 mV dec?1; the 20 h stability test retains almost 100%. The results show that the design optimization of the negative electrode material provides a simple and effective strategy to increase the energy density of supercapacitors, and EEC electrode materials are a great candidate to be utilized in supercapacitors with excellent performance as well as electrolytic water.  相似文献   

14.
Carbon nanofiber paper was prepared by electrospinning from thermosetting phenolic resin, followed by activation via KOH-containing molten salt at high temperature. By adding a small dosage of KOH in the molten salt the porous volume and specific surface area could be greatly improved. The obtained porous carbon nanofibers had a specific surface area of 1007 m2 g?1, total pore volume of 0.363 cm3 g?1, micropore volume of 0.247 cm3 g?1. The electrochemical measurements in 6 M KOH aqueous solution showed that the porous carbon nanofibers possessed high specific capacitance and considerable rate performance. The maximal specific capacitance of 288 F g?1 was achieved at 0.2 A g?1 and the specific capacitance could still remain 204 F g??1 at 20 A g?1 with the retention of 71%. In the molten salt system, the reaction between activating agent and carbon could be more efficient, hence, such molten salt-assisted activation method was considered as a general activation method for the high-specific-surface-areaed carbons.  相似文献   

15.
Nanostructured activated carbons for electrochemical double-layer capacitors were synthesized from depleted fullerene soot (DFS) via KOH activation. The structural and textural properties of the activated DFS were studied using transmission electron microscopy, X-ray diffraction, and nitrogen sorption. Activated DFS with high specific surface areas (SSAs) of up to 2,153 m2 g?1 and narrow pore size distributions (PSDs) was obtained by controlling the KOH/DFS ratio. The activated DFS exhibited excellent capacitive behavior, with a high specific capacitance of 250 F g?1 at a current density of 50 mA g?1 in a 6 M KOH electrolyte, and a high rate performance, with a capacitance retention of up to 80 % at a high scan rate of 200 mV s?1. Moreover, the activated DFS samples exhibited good electrochemical stability; high capacitance retention ratios of >90 % were obtained at a current density of 2,000 mA g?1 for 5,000 cycles with cell voltages of 0.9 and 1.0 V in a two-electrode system. The high electrochemical performance can be attributed to high SSAs, narrow PSDs, and nanoscale particle sizes, which facilitate the formation of electrochemical double layers and rapid ion diffusion.  相似文献   

16.
Doping homogeneous elements and conducting morphological adjustment as commonly-used modification methods are both effective to promote the electrochemical properties of electrode materials. In this work, nickel-doped manganese carbonate with 3D flower-like structure was synthesized by a one-step hydrothermal method, and the corresponding growth mechanism was investigated. The electrochemical characteristics of as-fabricated electrode materials were measured, among which 3D self-assembled Ni0.2Mn0.8CO3 nanoflower with large surface area exhibited superior areal capacitance of 583.5?F?g?1 at 1?A?g?1 (fourfold more than MnCO3 microcubes), excellent electrical conductivity as well as satisfactory cycling stability (84.78% capacitance retention after 2000 cycles at 2?A?g?1). In addition, the asymmetric supercapacitor assembled with Ni0.2Mn0.8CO3 as cathode and commercial activated carbon as anode displayed a high energy density of 24.1?Wh?kg?1 at the power density of 0.74?kW?kg?1 and showed a desirable cycle life. In summary, the unique 3D flower-like Ni0.2Mn0.8CO3 nanomaterial could be regarded as a promising electrode material for high-performance supercapacitors.  相似文献   

17.
In this study, the aromatic sulfonate compound Tiron with high charge to mass ratio is used as an anionic dopant for synthesis of polypyrrole (PPy). The fabricated PPy is investigated for electrochemical supercapacitor (ES) application. Testing results show that Tiron allows reduced PPy agglomeration, smaller particle size and improved charge storage properties of PPy. High capacitance and improved capacitive retention at high scan rates are achieved by the fabrication of PPy/multiwalled carbon nanotube (MWCNT) composite electrode using safranin (SAF) as a co‐dispersant. The Tiron‐doped PPy electrode shows the highest capacitance of 7.8 F cm?2 with a mass of 27 mg cm?2. The Tiron‐doped PPy/MWCNT composite electrode shows good capacitance retention with a capacitance of 1.0 F cm?2 at the scan rate of 100 mV s?1. Symmetric supercapacitor cells are fabricated using PPy based active materials. An energy density of 0.36 mWh cm?2 is achieved. The energy/power density and capacitance retention of the Tiron‐doped PPy/MWCNT ES is significantly improved in comparison with PPy‐based ES, prepared without Tiron or MWCNT. The Tiron‐doped PPy/MWCNT symmetric supercapacitor presents good cycling performance with 91.4% capacitance retention after 1000 charge–discharge cycles. The PPy/MWCNT composites, prepared using Tiron and SAF co‐dispersant, are promising electrodes for ES. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42376.  相似文献   

18.
Silver nanowires were synthesized on a large scale by using anodic aluminum oxide (AAO) film as templates and serving ethylene glycol as reductant. Their morphological and structural characterizations were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and selected area electron diffraction (SAED). The electrochemical properties of silver nanowires as electrode materials for electrochemical capacitors were investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge technique in 6 M KOH aqueous electrolyte. The Ag2O/Ag coaxial nanowires were formed by the incomplete electrochemical oxidation during the charge step. The maximum specific capacitance of 987 F g?1 was obtained at a charge–discharge current density of 5 mA cm?2.  相似文献   

19.
In this study, barnacle-like manganese oxide (MnO2) decorated porous carbon nanofibers (PCNF) were synthesized using electrospinning and the chemical precipitation method for high-performance asymmetric supercapacitors. The porous structure of PCNF was acquired using poly(styrene-co-acrylonitrile) in the electrospinning solution. In order to obtain the optimized barnacle-like MnO2 on PCNF (MnO2-PCNF), the barnacle-like MnO2 was synthesized using different synthetic times (namely, 1.5, 3.0, and 7.0 min) of the chemical precipitation. Among them, the optimized MnO2-PCNF for 3.0 min exhibited the well-dispersed MnO2 on the PCNF with the nano-size of 190–218 nm. The optimized MnO2-PCNF showed the superior specific capacitance of 209.8 F g?1 at 10 mV s?1 and the excellent high-rate performance of 160.3 F g?1 at 200 mV s?1 with the capacitance retention of 98.7% at 100 mV s?1 for 300 cycles. In addition, electrochemical performances of asymmetric cell (constructed activated carbon and MnO2-PCNF) showed the high specific capacitance of 60.6 F g?1 at the current density of 0.5 A g?1, high-rate capacitance of 30.0 F g?1 at the current density of 10 A g?1, and the excellent energy density of 30.3–15.0 Wh kg?1 in the power density range from 270 to 9000 W kg?1. The enhanced electrochemical performance can be explained by the synergistic effects of barnacle-like MnO2 nanoparticles with a high active area related to high specific capacitance and well-dispersed MnO2 with a short ion diffusion length related to the excellent high-rate performance.  相似文献   

20.
In this paper, pristine and nitrogen doped ordered porous carbon materials were fabricated by using maltose and amino-maltose synthesized by hydrothermal reaction as precursors via template strategy. The fabricated pristine ordered porous carbon (OPC) and nitrogen doped ordered porous carbon (NOPC) exhibit excellent textural properties and good capacitance performance, which specific surface area (SBET) reach 1107 and 726 m2 g?1 for the pristine OPC and NOPC materials while the specific capacitance reach up to 139 and 183 F g?1 under a current density of 0.5 A g?1, respectively. The capacitance retention rate for the pristine OPC and NOPC reaches ca. 81 and 92% as the current density increased from 0.5 to 20 A g?1, and no apparent capacitance decrease was observed after 5000 cycles. Although a sharp decrease of specific surface area was observed after N doping, the specific capacitance of NOPC was improved about 31% than that of the pristine OPC, the enhanced wettability and surface availability after N doping were found to be responsible for the enhanced capacitance performance of NOPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号