首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The notion of the family boundary curves (FBC), introduced recently for two-dimensional conservative systems, is extended to account for, generally, nonconservative autonomous systems of two degrees of freedom. Formulae are found for the force componentsX (x, y),Y (x, y) which produce a preassigned family of orbitsf(x, y)=c lying inside a preassigned, open or closed, regionB(x, y)0 of the xy plane.  相似文献   

2.
The second order partial differential equation which relates the potentialV(x,y) to a family of planar orbitsf(x,y)=c generated by this potential is applied for the case of homogeneousV(x,y) of any degreem. It is shown that, if the functionf(x,y) is also homogeneous, there exists, for eachm, a monoparametric set of homogeneous potentials which are the solutions of an ordinary, linear differential equation of the second order. Iff(x,y) is not homogeneous, in general, there is not a homogeneous potential which can create the given family; only if =f y /f x satisfies two conditions, a homogeneous potential does exist and can be determined uniquely, apart from a multiplicative constant. Examples are offered for all cases.  相似文献   

3.
Given a planar potentialB=B(x, y), compatible with a monoparametric family of planar orbitsf(x, y)=c, we face the problem of producing potentialsA=A(x, y), adelphic toB(x, y), i.e. nontrivial potentials which have in common withB(x, y) the given set of orbits. We establish a linear, second order partial differential equation for a functionP(x, y) and we prove that, to any definite positive solution of this equation, there corresponds a potentialA(x, y) adelphic toB(x, y).  相似文献   

4.
We study, using the tool of Joukovsky’s orthogonal coordinates, the determination of the potentials having two families of orthogonal trajectories. We show for compatible cases the existence and the uniqueness, up to a constant factor, of the solution. We note the importance of the ‘isothermal’ nets of curves. We study as an example the net of geometrically similar conic curves and orthogonal trajectories. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

6.
As a possible extension of recent work we study the following version of the inverse problem in dynamics: Given a two-parametric familyf(x, y, b)=c of plane curves, find an autonomous dynamical system for which these curves are orbits.We derive a new linear partial differential equation of the first order for the force componentsX(x, y) andY(x, y) corresponding to the given family. With the aid of this equation we find that, depending on the given functionf, the problem may or may not have a solution. Based on given criteria, we present a full classification of the various cases which may arise.  相似文献   

7.
The Sitnikov's Problem is a Restricted Three-Body Problem of Celestial Mechanics depending on a parameter, the eccentricity,e. The Hamiltonian,H(z, v, t, e), does not depend ont ife=0 and we have an integrable system; ife is small the KAM Theory proves the existence of invariant rotational curves, IRC. For larger eccentricities, we show that there exist two complementary sequences of intervals of values ofe that accumulate to the maximum admissible value of the eccentricity, 1, and such that, for one of the sequences IRC around a fixed point persist. Moreover, they shrink to the planez=0 ase tends to 1.  相似文献   

8.
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3-body problem. Additionally, we also continue to this restricted problem the so called “comet orbits”. An erratum to this article can be found at  相似文献   

9.
Numerical solutions are presented for a family of three dimensional periodic orbits with three equal masses which connects the classical circular orbit of Lagrange with the figure eight orbit discovered by C. Moore [Moore, C.: Phys. Rev. Lett. 70, 3675–3679 (1993); Chenciner, A., Montgomery, R.: Ann. Math. 152, 881–901 (2000)]. Each member of this family is an orbit with finite angular momentum that is periodic in a frame which rotates with frequency Ω around the horizontal symmetry axis of the figure eight orbit. Numerical solutions for figure eight shaped orbits with finite angular momentum were first reported in [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and mathematical proofs for the existence of such orbits were given in [Marchal, C.: Celest. Mech. Dyn. Astron. 78, 279–298 (2001)], and more recently in [Chenciner, A. et al.: Nonlinearity 18, 1407–1424 (2005)] where also some numerical solutions have been presented. Numerical evidence is given here that the family of such orbits is a continuous function of the rotation frequency Ω which varies between Ω = 0, for the planar figure eight orbit with intrinsic frequency ω, and Ω = ω for the circular Lagrange orbit. Similar numerical solutions are also found for n > 3 equal masses, where n is an odd integer, and an illustration is given for n = 21. Finite angular momentum orbits were also obtained numerically for rotations along the two other symmetry axis of the figure eight orbit [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and some new results are given here. A preliminary non-linear stability analysis of these orbits is given numerically, and some examples are given of nearby stable orbits which bifurcate from these families.  相似文献   

10.
The separatrix between bounded and unbounded orbits in the three-body problem is formed by the manifolds of forward and backward parabolic orbits. In an ideal problem these manifolds coincide and form the boundary between the sets of bounded and unbounded orbits. As a mass parameter increases the movement of the parabolic manifolds is approximated numerically and by Melnikov's method. The evidence indicates that for positive values of the mass parameter these manifolds no longer coincide, and that capture and oscillatory orbits exist.  相似文献   

11.
The main goal of this paper is to give an approximation to initial conditions for ejection-collision orbits with the more massive primary, in the planar elliptic restricted three body problem when the mass parameter µ and the eccentricity e are small enough. The proof is based on a regularization of variables and a perturbation of the two body problem.This work was partially supported by DGICYT grant number PB90-0695.  相似文献   

12.
We present a numerical study of the set of orbits of the planar circular restricted three body problem which undergo consecutive close encounters with the small primary, or orbits of second species. The value of the Jacobi constant is fixed, and we restrict the study to consecutive close encounters which occur within a maximal time interval. With these restrictions, the full set of orbits of second species is found numerically from the intersections of the stable and unstable manifolds of the collision singularity on the surface of section that corresponds to passage through the pericentre. A ‘skeleton’ of this set of curves can be computed from the solutions of the two-body problem. The set of intersection points found in this limit corresponds to the S-arcs and T-arcs of Hénon’s classification which verify the energy and time constraints, and can be used to construct an alphabet to describe the orbits of second species. We give numerical evidence for the existence of a shift on this alphabet that describes all the orbits with infinitely many close encounters with the small primary, and sketch a proof of the symbolic dynamics. In particular, we find periodic orbits that combine S-type and T-type quasi-homoclinic arcs.  相似文献   

13.
The aim of the planar inverse problem of dynamics is: given a monoparametric family of curves f(x, y) = c, find the potential V (x, y) under whose action a material point of unit mass can describe the curves of the family. In this study we look for V in the class of the anisotropic potentials V(x, y) = v(a2x2 + y2), (a=constant). These potentials have been used lately in the search of connections between classical, quantum, and relativistic mechanics. We establish a general condition which must be satisfied by all the families produced by an anisotropic potential. We treat special cases regarding the families (e. g. families traced isoenergetically) and we present certain pertinent examples of compatible pairs of families of curves and anisotropic potentials. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the evolution of the families of double-and triple-periodic orbits in a dynamical system that has closed zero velocity curves for arbitrarily large energies. We find three interesting features: (i) the characteristic x=x(h) of the family of double periodic orbits divides the (x,h)-plane into two unconnected parts; (i i) there is a sequence of sixteen closed characteristics, bifurcating from another one, each of them inside the previous one; (iii) inside the innermost characteristic of that sequence there is a sequence of eight pairs of close characteristics which are not connected with any of the previous characteristics.  相似文献   

15.
16.
Zero-velocity curves are a useful tool in the investigation of various aspects of a dynamical system. These curves that distinguish the regions where the motion of a particle is permissible from the regions where this motion is not permitted, present some basic properties. In this paper, we prove that in symmetric ring-type systems where a small particle moves under the resultant gravitational field of N coplanar big bodies, of which ν=N−1 are arranged at equal distances among them on the periphery of a circle, a new property concerning these curves, exists. All the zero-velocity curves drawn in the space of the initial conditions (x0,C) and concerning configurations with the same number of peripheral primaries but various mass parameters, pass through two different focal points, the position of which does not depend on the value of the mass parameter.  相似文献   

17.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

18.
Direct Taylor expansion of the initial states of families of planar symmetric periodic solutions of the restricted problem in terms of the period with numerical examples are given. The computation of the coefficients of the series is based on the integration of the equations of first, second, third, etc. variations. In this work we did not consider the equations of fourth and higher variations.  相似文献   

19.
The accurate computation of families of periodic orbits is very important in the analysis of various celestial mechanics systems. The main difficulty for the computation of a family of periodic orbits of a given period is the determination within a given region of an individual member of this family which corresponds to a periodic orbit. To compute with certainty accurate individual members of a specific family we apply an efficient method using the Poincaré map on a surface of section of the considered problem. This method converges rapidly, within relatively large regions of the initial conditions. It is also independent of the local dynamics near periodic orbits which is especially useful in the case of conservative dynamical systems that possess many periodic orbits, often of the same period, close to each other in phase space. The only computable information required by this method is the signs of various function evaluations carried out during the integration of the equations of motion. This method can be applied to any system of celestial mechanics. In this contribution we apply it to the photogravitational problem.  相似文献   

20.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号