首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage–current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge.  相似文献   

2.
Dry etching of 6H silicon carbide (6H-SiC) wafers in a C4Fs/Ar dual-frequency capacitively coupled plasma (DF-CCP) was investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to measure the SiC surface structure and compositions, respectively. Optical emission spectroscopy (OES) was used to measure the relative concentration of F radicals in the plasma. It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency (LF) source. At lower LF power, a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers. At higher LF power the etching rate can be efficiently increased, but the surface roughness increases too. Compared with other plasma dry etching methods, the DF-CCP can effectively inhibit CχFγ films' deposition, and reduce surface residues.  相似文献   

3.
Dry etching of 6H silicon carbide(6H-SiC)wafers in a C_4Fs/Ar dual-frequency capacitively coupled plasma(DF-CCP)was investigated.Atomic force microscopy(AFM)and X-ray photoelectron spectroscopy(XPS)were used to measure the SiC surface structure and compositions,respectively.Optical emission spectroscopy(OES)was used to measure the relative concentration of F radicals in the plasma.It was found that the roughness of the etched SiC surface and the etching rate are directly related to the power of low-frequency(LF)source.At lower LF power,a smaller surface roughness and a lower etching rate are obtained due to weak bombardment of low energy ions on the SiC wafers.At higher LF power the etching rate can be efficiently increased,but the surface roughness increases too.Compared with other plasma dry etching methods,the DF-CCP can effectively inhibit C_xF_y films'deposition,and reduce surface residues.  相似文献   

4.
溅射功率对磁控溅射制备Bi薄膜结构和性能的影响   总被引:1,自引:0,他引:1  
采用直流磁控溅射方法在不同功率下制备了铋(Bi)薄膜,对薄膜的沉积速率、表面形貌、生长模式、晶体结构进行了研究,并对其晶粒尺寸和应力的变化规律进行了分析。扫描电镜(SEM)图像显示:薄膜均为柱状生长,平均晶粒尺寸随溅射功率先增大后减小,薄膜的致密度随着功率的增加而降低,在60W时又变得较致密。X射线衍射(XRD)结果表明:Bi薄膜均为多晶斜六方结构,薄膜内应力随功率的增加由张应力变为压应力。  相似文献   

5.
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.  相似文献   

6.
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).  相似文献   

7.
Optical emission spectroscopy measurements of dual-frequency capacitively coupled CF4 plasmas were carried out.The gas temperature(Tg) was acquired by fitting the optical emission spectra of a CF B X system in 201~206 nm.The atomic fluorine concentration and the electron temperature(Te) were obtained by trace rare gas optical emission spectroscopy and a modified Boltzmann plot technique,respectively.It was found that the gas temperature was about 620±30 K at 50 mTorr and the atomic fluorine concentration increased while the electron temperature decreased with increasing gas pressure and power of high frequency(60 MHz).With increasing low frequency(2 MHz) power,the electron temperature also increased,but the atomic fluorine concentration was insensitive to this change.The generation and disappearance mechanisms of F atoms are discussed.  相似文献   

8.
This work investigated C2F6/O2 /Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2 /Ar plasma, the increase in the LF power prompted the reaction between O2 and C2F6 , resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.  相似文献   

9.
Spatial distributions of plasma parameters such as electron density, electron temperature and electric potential were investigated using a commercial simulation software (COMSOLTM) to predict the effects of antenna configuration in a large area inductively cou- pled plasma (ICP) system for flat panel displays. Nine planar antenna sets were evenly placed above a ceramic window. While the electron density was influenced by both the input current and gas pressure, the electron temperature and electric potential were dominantly affected by the gas pressure.  相似文献   

10.
The effect of the frequency and power of the bias applied to the substrate on plasma properties in 60 MHz(VHF) magnetron sputtering was investigated.The plasma properties include the ion velocity distribution function(IVDF),electron energy probability function(EEPF),electron density n_e,ion flux Γ_i,and effective electron temperature T_(eff).These parameters were measured by a retarding field energy analyzer and a Langmuir probe in the 60 MHz magnetron sputtering,assisted with 13.56 MHz or 27.12 MHz substrate bias.The 13.56 MHz substrate bias led to broadening and multi-peaks IVDFs,Maxwellian EEPFs,as well as high electron density,ion flux,and low electron temperature.The 27.12 MHz substrate bias led to a further increase of electron density and ion flux,but made the IVDFs narrow.Therefore,the frequency of the substrate bias was a possible way to control the plasma properties in VHF magnetron sputtering.  相似文献   

11.
12.
采用圆柱形和圆锥形的放电腔室,使用氢气作为放电气体在不同的射频功率下进行了放电。使用质谱诊断和Langmuir探针诊断相结合的方法对两种放电腔室中的氢等离子体的离子组分、离子能量分布(IED)、等离子体电势、电子密度和有效电子温度进行了对比研究。根据等离子体的诊断结果,讨论了圆锥形与圆柱形两种放电腔室中的放电特性。结果表明:圆柱形放电腔室中含有更多的亚稳态氢原子H *,而圆锥形放电腔室中含有更多的H+离子。圆锥形放电腔室中等离子体具有更高的电子密度和离子密度及更低的等离子体电势。  相似文献   

13.
A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.  相似文献   

14.
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.  相似文献   

15.
A spacecraft loses all forms of communication, including global positioning system signals, data telemetry, voice communication and so on, when it enters the communication blackout phase. This becomes more and more critical with the development of reentry vehicle missions since radio blackout brings about many serious issues related to vehicle safety. This paper studies the influence of magnetic field on antenna performance in plasma. The results indicate that the effect of plasma on the antenna performance can be negligible when the magnetic field reaches a certain strength. This provides another way to solve the reentry blackout problem.  相似文献   

16.
In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model,two sub-models of time-dependent plasma dynamics and laminar flow are connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N_2 gas. The mole fractions of the N_2(NMF)ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×10~6m/s to 0.80×10~6m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization.  相似文献   

17.
The killing logarithms index in killing a vegetative form in an explosure of about 90s and a spore in an explosure of about 120s, by using a low-temperature plasma produced by dielectric barrier discharge (DBD), reached 5. The speed in killing the strains tested, by using a low-temperature plasma, was the highest with E. Coli, then S. Aureus and B. Subtilis var niger spore. The results of the scanning electron microscope showed that the low-temperature plasma destroyed the outer structure of the bacteria and that the vegetative form was more susceptible to the inactivation effect of the low-temperature plasma than was the spore. This indicated that the effects of the high voltage and high velocity particle flow, in plasma, penetrating through the outer structure of the bacteria might play a dominant role during the inactivation of the bacteria.  相似文献   

18.
The effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron discharge was investigated. The ion velocity distribution function(IVDF), the maximum ion energy and ion flux density were measured at the substrate by a retarding field energy analyzer. The sputtering behavior was investigated by the electric characteristics of target and bias discharges using voltage–current probe technique. It was found that the substrate bias led to the decrease of sputtering power, voltage and current with the amplitude 7.5%. The substrate bias also led to the broadening of IVDFs and the increase of ion flux density, made the energy divergent of ions impacting the substrate. This effect was further enhanced by increasing bias power and reducing discharge pressure.  相似文献   

19.
The influence of metal ions, such as Fe2+ , Fe3+ , Cu2+ and Mn2+ , on 4-CP degrada- tion was investigated in an aqueous pulsed discharge plasma system with or without the addition of a TiO 2 photo-catalyst. From an analysis of the pseudo first-order rate constant (k CP ) and energy efficiency (G 50% ) for 4-CP degradation, the experimental results show that the degradation of 4-CP is much enhanced in the presence of ferrous ions at the optimal concentration of 0.2~0.8 mmol/L or 0.2 mmol/L in an aqueous pulsed discharge plasma without or with the TiO2 system, respectively, and the enhancement is ascribed to plasma induced Fenton and photo-Fenton reactions. Meanwhile, the rank of such metal ions for catalytic effect on 4-CP degradation was Fe2+ > Fe3+ > Cu2+ > Mn2+ and Fe2+ > Fe3+ > Mn2+ > Cu2+ for the former and the latter systems, respectively, and the reasons behind this were discussed through the analysis of active species, especially hydrogen peroxide.  相似文献   

20.
The functionality of the plasma antenna has been narrowed to types and brand names only.The physics of its operation has been neglected and has stagnated technological innovations.The magnetic field in the sheath and plasma were investigated.Notable specifications were worked out in the proposed improved cylindrical monopole plasma antenna.The occurrence of femto spin demagnetization was discovered between the duration of switch on and switch off of the antenna.This phenomenon seems transient because magnetization is highest at the switch on/off point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号