首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gas permeation and thermomechanical properties of macroporous alumina used as a support substrate for microporous ceramic permselective membranes were investigated. The porosity, pore size, and apparent necking size between grains of macroporous alumina were systematically varied, and the relationships between the porous microstructure and material properties were examined. The grain necking size at alumina grain boundaries was evaluated by microstructural observations. The nitrogen gas permeance of the porous alumina increased with increasing pore size. All the measured thermal and mechanical properties decreased with increasing porosity. The properties of porous alumina samples with extensive grain necking showed higher values even in samples with the largest pore size. The high thermal conductivity of porous alumina with extensive grain necking was due to the low interfacial thermal resistance at grain boundaries. Porous alumina with extensive grain necking had high thermal shock strength due to the higher thermal conductivity. It was demonstrated that a porous structure combining high gas permeability and excellent fracture resistance could be successfully achieved.  相似文献   

2.
Highly porous Si3N4 ceramics with bimodal pore structure were prepared by the extrusion processing with petroleum coke of 30 μm as pore‐maker. The microstructure, mechanical strength, and gas permeability were investigated. The microstructure with petroleum coke contained not only numerous fine pores by interlocking the high aspect ratio β‐Si3N4 grains, but also some large pores of 15‐25 μm left by the burnout of petroleum coke. The resultant samples obtained an improved gas permeability of 1.2 × 10?12 m2, which is approximately two times that of samples without petroleum coke addition. Furthermore, the mechanical strength is still superior even at a porosity of 67% in comparison with the other porous ceramics used in the current diesel particulate filter.  相似文献   

3.
Reticulated porous ceramics with structural features spanning across multiple length scales are emerging as the primary media in a variety of demanding mass and heat transfer applications, most notably solar-assisted synthetic fuel processing. In this study, we focus on engineering of the open pore silicon carbide (SiC)-based foams in such catalytic applications. We evaluate the mechanical integrity and thermal stability of these porous structures. X-ray tomography analyses of the 3D structures reveal the presence of dual pore size distribution different by up to an order of magnitude in length scale. We further study the effect of thermal shock—induced via water quenching—on the SiC structures and we conclude that the mechanical properties of the ceramic foams are significantly reduced after thermal stress. Comparison of SEM micrographs—before and after thermal shock—reveals that needle-like features appear inside the foam matrix. These elongated defects may be responsible for structural and mechanical weakening.  相似文献   

4.
The thermal shock resistance of the porous boron nitride/silicon oxynitride (BN/Si2N2O) ceramic composites were tested by the quenching‐strength method with temperature differences of 600‐1400°C. The residual flexural strength of the composites decreased with increasing temperature difference from 600°C to 900°C. This weakening in flexural strength was attributed to the formation of microcracks in the matrix caused by thermal stress damage. Afterward, as the formation of a dense oxidized layer sealed the surface and hindered further oxidation, the residual flexural strength increased with the further increase of temperature difference from 900°C to 1100°C. Finally, when the temperature differences were above 1100°C, the residual flexural strength gradually decreased with increasing temperature difference, which was attributed to the further oxidation and large thermal stress damage. And the thermal shock resistance of the porous BN/Si2N2O ceramic can be improved by the introduction of high contents of sintering aids and h‐BN.  相似文献   

5.
Thermal Shock Behavior of Isotropic and Anisotropic Porous Silicon Nitride   总被引:2,自引:0,他引:2  
The thermal shock behavior of isotropic and anisotropic porous Si3N4 was evaluated using the water-quenching technique. The critical temperature difference for crack initiation was found to be strongly dependent on the ratio of fracture strength to elastic modulus. Because of a very high strain-to-failure, anisotropic porous Si3N4 showed no macroscopic cracks and was able to retain its strength even at a quenching-temperature difference of ∼1400°C.  相似文献   

6.
Thermal Shock Behavior of Porous Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
Using the water-quenching technique, the thermal shock behavior of porous silicon carbide (SiC) ceramics was evaluated as a function of quenching temperature, quenching cycles, and specimen thickness. It is shown that the residual strength of the quenched specimens decreases gradually with increases in the quenching temperature and specimen thickness. Moreover, it was found that the fracture strength of the quenched specimens was not affected by the increase of quenching cycles. This suggests a potential advantage of porous SiC ceramics for cyclic thermal-shock applications.  相似文献   

7.
Porous alumina, with monodispersed PMMA as pore former and Y2O3 as sintering additive, was prepared via a gel casting route with Isobam as a gelling agent. The effects of PMMA addition on its properties, including apparent porosity, bulk density, strength, permeability, and corrosion resistance to acid/alkali, were investigated. With PMMA addition increased, the apparent porosity and permeability were increased obviously, while strength and corrosion resistance to acid/alkali were deteriorated due to increased porosity. Higher firing temperature resulted in lower porosity, higher strength, lower permeability, and better corrosion resistance to acid/alkali. Coarser raw powders resulted in lower strength and higher permeability due to the coarser structure and larger pores of the fabricated samples. Because Y2O3 was used as a sintering additive, and no silica was introduced, the resulting samples possess better corrosion resistance to acid and alkali, especially much better corrosion resistance to alkali, than those reported with silica introduced.  相似文献   

8.
Corundum porous materials with different contents of calcium hexaluminate formed in situ were prepared using pure calcium aluminate cement as the calcium source. The surface fractal dimensions of the porous materials were calculated based on the experimental data of mercury intrusion. Correlations between pore structural parameters and the permeability coefficients k1 and k2 of the porous materials were then studied based on the grey system theory. The results showed that pores in the corundum porous materials have great fractal characteristics. The surface fractal dimension was a significant pore structural parameter that reflected the complexity of pore shape, pore surface, and pore-size distribution, which had the maximum correlation coefficient with the permeability of this type of porous materials. The apparent porosity and pore-size distribution had relatively high correlation coefficients to the permeability as well. Increasing the apparent porosity and the volume percentage of larger pores, and decreasing the volume percentage of smaller pores all benefited the permeability of the porous materials. In addition, the mean pore size and median pore size showed lower correlation coefficients to the permeability—especially for porous materials with a wide pore-size distribution.  相似文献   

9.
Porous alumina was fabricated using different particle size, sintering temperature, and particle size and content of poly (methyl-methacrylate) (PMMA) as pore former. The Forchheimer equation was used to investigate the relationship between porosity and average pore size, and obtain the permeability constants k1 and k2 (the viscous effect and the inertial effect, respectively). Compared to Darcy's law, the Forchheimer equation established a more realistic and reliable relationship between fluid pressure and fluid velocity. k1 and k2 were found to be more sensitive to the average pore size than to the porosity of alumina. Moreover, reliable relationships were confirmed between the average pore size and k1, k2, and their ratio (k1/k2).  相似文献   

10.
We herein describe the sintering of a slurry containing alumina, aluminum, and polysiloxane. After sintering, porous alumina was obtained with an increased bulk density but without any remarkable change in volume. In addition, necking was found to occur between the alumina and aluminum particles due to the formation of an aluminum silicate layer by polysiloxane upon sintering at 800°C, and this necking resulted in volume expansion upon further heating. Furthermore, the bulk density of the sample increased due to aluminum filling the spaces between particles during aluminum oxidation when sintering at temperatures ≥1200°C.  相似文献   

11.
The effects of SiC whisker addition into nano-SiC powder-carbon black template mixture on flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics were investigated. The flexural strength of 1200°C-sintered porous silica-bonded SiC ceramics increased from 9.5 MPa to 12.8 MPa with the addition of 33 wt% SiC whisker because the SiC whiskers acted as a reinforcement in porous silica-bonded SiC ceramics. The thermal conductivity of 1200°C-sintered porous silica-bonded SiC ceramics monotonically increased from 0.360 Wm–1K–1 to 1.415 Wm–1K–1 as the SiC whisker content increased from 0 to 100 wt% because of the easy heat conduction path provided by SiC whiskers with a high aspect ratio. The specific flow rate of 1200°C-sintered porous SiC ceramics increased by two orders of magnitude as the SiC whisker content increased from 0 to 100 wt%. These results were primarily attributed to an increase in pore size from 125 nm to 565 nm and secondarily an increase in porosity from 49.9% to 63.6%. In summary, the addition of 33 wt% SiC whisker increased the flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics by 35%, 133%, and 266%, respectively.  相似文献   

12.
In order to investigate the relationship between pore structure and thermal conductivity as well as mechanical strength, porous alumina ceramics (PAC) with various pore structures were fabricated, using starch as the pore‐forming agent. Fractal theory was employed to characterize the pore size distribution more accurately than ever used parameters. The results show that the increase in starch content in PAC leads to an enhanced porosity, a higher mean pore size, and reduced fracture dimension, thermal conductivity and strength. The fractal analysis indicated that the fractal dimension decreases gradually and reaches its minimum value with increasing the starch content up to 25 wt%, but the further incorporation results in an opposite trend. It is suggested from micro‐pore fractographic analysis that the optimization of both thermal insulation performance and mechanical strength are positively correlated with the increase in the mean pore size and proportion of 2‐14 μm pores but negatively corrected with the porosity. These results provide a new perspective and a deeper understanding for fabrication of PAC with both excellent thermal insulation and mechanical performance.  相似文献   

13.
Generally, a multilayer structure is present inside a walnut shell, and the residual structure of the walnut shell is retained after impregnation and firing. When the walnut shell is used as a pore-forming agent, this structure helps in improving the mechanical and thermal insulation properties of the lightweight porous materials. In this study, porous mullite materials (PMMs) with plant morphological structure pores were prepared using a-Al2O3 and silica powder as the raw materials with addition of sol-impregnated walnut shell powder (WSP). The influence of sol type and firing temperature on the pore structure of the PMMs was analyzed, which affected the compressive strength and thermal conductivity. The plant morphological porous structure was observed in the samples after sol impregnation. After firing at different temperatures, the porous structure gradually contracted and supported the pores, improving the mechanical properties, while the complex porous structure increased the heat conduction path, thereby improving the insulation performance. Using WSP impregnated with silica-sol and zirconia-sol as pore-forming agents, PMMs with higher compressive strength and relatively low thermal conductivity (TC) were prepared.  相似文献   

14.
High-temperature properties including compressive strength, thermal shock behavior, and thermal conductivity of porous anorthite ceramics with high specific strength were tested and analyzed. The results showed that the prepared materials merit high-temperature compressive strength, thermal stability, and conductivity. With the appropriate fabrication parameters, even though containing 0.33 g/cm3 bulk density and 88.2% porosity, its compressive strength could reach 2.03 MPa at 1000°C, 147% of that at room temperature; the residual strength ratio kept as 114.7% after a thermal shock at 1200°C. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that anorthite grains refinement and intergranular voids filling by liquid phase were main factors for the high strength. From room temperature to 1200°C, its thermal conductivity only varied from 0.085 to 0.258 W·(m·K)−1. High porosity, a large number of nanoregions in anorthite grains and amorphous phase in grain boundary were main reasons for low thermal conductivity.  相似文献   

15.
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated.  相似文献   

16.
The porosity and corresponding microstructural features ultimately determine the properties of the macroporous materials. In this work, porous PZT95/5 ferroelectric ceramics having a common bulk density but with disperse and agglomerated pore distribution were prepared to study their influence on the physical properties. It is experimentally demonstrated that pore distribution exhibits significant influence on the shock compression response behaviors. Porous PZT95/5 ferroelectric ceramics with disperse pores exhibit enhanced shock resistance and thus higher breakdown strengths than its counterparts with agglomerated voids. To explain the underlying physical mechanism, a lattice‐spring model was employed to simulate both macroscopic shock response and mesoscopic evolution of the microstructures under shock compression. Our simulation results are concordant with our experimental observations. The enhanced shock resistance and larger shock plasticity of porous PZT95/5 ferroelectric ceramics with disperse pores under shock compression was found to be responsible for the superior performance.  相似文献   

17.
A porous alumina body was synthesized from anisotropic alumina particles (platelets). The uniaxial pressure in fabricating the green compact body had an influence on the relative density of the alumina body after heating. When green compacts, which had been uniaxially pressed at 1 and 3 MPa, were heated at 1400 °C for 1 h, the relative densities of the resulting alumina bodies were 25.0% and 35.5%, respectively. The compressive strength of compacts that were uniaxially pressed at 1 and 3 MPa were 0.8 and 4.3 MPa, respectively. In an attempt to increase the compressive strength of these porous alumina bodies, aluminum nitrate and magnesium nitrate solution treatments were performed, followed by reheating to 1400 °C for 1 h. When a 0.5 mol/l aluminum nitrate solution was used, the compressive strength of the porous alumina body uniaxially pressed at 1 MPa changed from 0.8 MPa (without solution treatment) to 1.5 MPa. Furthermore, when 0.1 mol/l magnesium nitrate solution was used, the compressive strength of the porous alumina increased to 1.7 MPa. Thus, solution treatment of the porous alumina body had a strong positive effect on its mechanical strength.  相似文献   

18.
Porous alumina ceramics with ultra-high porosity were prepared through combining the gel-casting process with the pore-forming agent technique. Porosity and pore size distribution of the sintered bulks were evaluated with and without adding starch, respectively. In particular, the influences of starch addition on the properties, including thermal conductivity and compressive strength were studied. It was found that the incorporation of starch increased the nominal solid loading in the suspension and subsequently promoted the particle packing efficiency. The porosity is raised with increasing starch content from 0 to 30 vol%, which brings the decrease in thermal conductivity, whereas the compressive strength isn't seriously degraded. The further higher starch addition (40 vol%), however, would deteriorate the performance of the alumina porous ceramics. It is believed that the appropriate starch amount (lower than 30 vol%), working as a pore-forming agent, suppresses the driving force of densification without affecting the connections of neighboring grains while excessive starch amount would lead to the collapse of the porous structure.  相似文献   

19.
Sintering kinetics of NiFe2O4-based ceramics inert anodes for aluminum electrolysis doped 7 wt% TiN nanoparticles were conducted to investigate densification and grain growth behaviors. The linear shrinkage increased gradually with the increasing sintering temperature between 1000 and 1450°C, whereas the linear shrinkage rate exhibited a broad peak. The maximum linear shrinkage rate was obtained at 1189.4°C, and the highest densification rate was achieved at the relative density of 75.20%. Based on the pressureless sintering kinetics window, the sintering process was divided into the initial stage, the intermediate stage, and the final stage. The grain growth exponent reduced with increased sintering temperature, whereas the grain growth activation energy decreased by increasing sintering temperature and shortening dwelling time. The grain growth was mainly controlled by atomic diffusion. NiFe2O4-based ceramics possessed high-temperature semiconductor essential characteristics. The electrical conductivity of NiFe2O4-based ceramics first increased and then decreased with increasing sintering temperature, reached their maximum value (960°C) of 33.45 S/cm under 1300°C, mainly attributed to the relatively dense and uniform microstructure. The thermal shock resistance of NiFe2O4-based ceramic was improved by a stronger grain boundary bonding strength and lower coefficient of linear thermal expansion.  相似文献   

20.
Heat dissipation material with programmable anisotropic property is very challenging, yet can realize the controllable thermal diffusion for heating device. In this work, anisotropic Si3N4 ceramics with oriented grains are prepared to adjust and improve the mechanical and thermal properties under the applied stress field by rolling film forming technology. Through the design of the sintering aids in the process of liquid-phase sintering, the orientation degree of the Si3N4 grains is programmable as well as the mechanical property and the thermal property of the Si3N4 ceramics. As a consequence, the obtained Si3N4 ceramics show significant anisotropy in mechanical properties and thermal conductivity. The typical fracture toughness and thermal conductivity along the grain orientation direction are 10.6 MPa⋅m1/2 and 45.45 W/(m⋅K) while they are 4.5 MPa⋅m1/2 and 66.42 W/(m⋅K) in the direction perpendicular to the oriented grain, respectively. This grain orientation method paves the way for the thermal performance design and the production of programmable heat dissipation material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号