首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

2.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

3.
4.
The feline c-fes proto-oncogene, different parts of which were captured in feline leukemia virus (FeLV) to generate the transforming genes (v-fes) of the Gardner-Arnstein (GA) strain of feline sarcoma virus (FeSV) and the Snyder-Theilen strain (ST) of FeSV, was cloned and its genetic organization determined. Southern blot analysis revealed that the c-fes genetic sequences were distributed discontinuously and colinearly with the v-fes transforming gene over a DNA region of around 12.0 kb. Using cloned c-fes sequences, complementation of GA-FeSV transforming activity was studied. Upon replacement of the 3' half of v-fesGA with homologous feline c-fes sequences and transfection of the chimeric gene, morphological transformation was observed. Immunoprecipitation analysis of these transformed cells revealed expression of high Mr fusion proteins. Phosphorylation of these proteins was observed in an in vitro protein kinase assay, and tyrosine residues appeared to be involved as acceptor amino acid.  相似文献   

5.
A cloned, permuted DNA copy of the Abelson murine leukemia virus (A-MuLV) genome was capable of eliciting the morphological transformation of NIH/3T3 fibroblasts when applied to cells in a calcium phosphate precipitate. The efficiency of the process was extremely low, yielding approximately one transformant per microgram of DNA under conditions which give 10(4) transfectants per microgram of other DNAs (e.g., Moloney sarcoma virus proviral DNA). The DNA was able to induce foci, even though the 3' end of the genome was not present. The transforming gene was thus localized to the 5' portion of the genome. The transformed cells all produced viral RNA and the virus-specific P90 protein. Transmissible virus could be rescued from these cells at very low frequencies by superinfection with helper virus; the rescued A-MuLV virus had variable 3' ends apparently derived by recombination with the helper. Dimerization of the permuted A-MuLV cloned genome to reconstruct a complete provirus did not improve transformation efficiency. Virus could be rescued from these transformants, however, at a high efficiency. Cotransfection of the permuted A-MuLV DNA with proviral M-MuLV DNA yielded a significant increase in the efficiency of transformation and cotransfection of dimeric A-MuLV and proviral M-MuLV resulted in a high-efficiency transformation yielding several thousand more transformants per microgram than A-MuLV DNA alone. We propose that helper virus efficiently rescues A-MuLV from transiently transfected cells which would not otherwise have grown into foci. We hypothesize that multiple copies of A-MuLV DNA introduced into cells by transfection are toxic to cells. In support of this hypothesis, we have shown that A-MuLV DNA sequences can inhibit the stable transformation of cells by other selectable DNAs.  相似文献   

6.
Functional organization of the Harvey murine sarcoma virus genome.   总被引:27,自引:11,他引:16       下载免费PDF全文
The comparative infectivity of Harvey murine sarcoma virus (Ha-MuSV) DNA for NIH 3T3 cells was determined for supercoiled Ha-MuSV DNA molecularly cloned in lambda phage and pBR322 at its unique EcoRI site (which is located near the middle of the 6-kilobase pair [kbp] unintegrated linear viral DNA) and for two cloned subgenomic fragments: one was 3.8 kbp and lacked about 1 kbp from each side of the EcoRI site, and the second did not contain the 3 kbp of the unintegrated linear viral DNA located on the 3' side of the EcoRI site. Each subgenomic DNA induced foci of transformed cells, but with a lower relative efficiency then genomic DNA. Transfection with intact vector Ha-MuSV DNA yielded results similar to those obtained after separation of Ha-MuSV DNA from vector DNA. Cells lines were then derived from individual foci transformed with each type of viral DNA. Focus-forming virus was recovered from transformed cells after superinfection with a helper-independent virus, but the efficiency varied by several orders of magnitude. For several transformed lines, the efficiency of recovery of focus-forming virus was correlated with the structure of the Ha-MuSV DNA in the cells before superinfection. When 32P-labeled Ha-MuSV DNA probes specific for sequences on either the 3' or 5' side of the EcoRI site were used to analyze the viral RNA in the transformed cell lines, all lines were found to hybridize with the 5' probe, but some lines did not hybridize with the 3' probe. The transformed lines contained high levels of the Ha-MuSV-coded p21 or its associated GDP-binding activity. We conclude that the transforming region and the sequences that code for the viral p21 protein are both located within the 2 kilobases closest to the 5' end of the Ha-MuSV genome.  相似文献   

7.
Cellular transformation by subgenomic feline sarcoma virus DNA   总被引:6,自引:3,他引:3       下载免费PDF全文
The genome of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV) is a 4.3-kilobase-pair (kbp) RNA molecule that contains a 1.5-kbp cellular insertion (fes gene) flanked by feline leukemia virus sequences at its 5' end (1.6 kbp) and 3' end (1.2 kbp) (Sherr et al., J. Virol. 34:200-212, 1980). DNA transfection techniques have been utilized to determine the regions of the ST-FeSV genome involved in malignant transformation. I have found that the 3.7-kbp 5'-end fragment of the ST-FeSV provirus (which corresponds to the 3.4-kbp 5'-end fragment of the viral genome) is sufficient to transform NIH/3T3 fibroblasts. Enzymes that cleave the ST-FeSV provirus DNA within the feline leukemia virus gag gene sequences or within the fes gene abolished the transforming activity. Preservation of the proviral large terminal repeats was also required for transformation. Transformed NIH/3T3 cells obtained by transfection of total or subgenomic ST-FeSV DNA expressed normal levels of the ST-FeSV gene product ST P85 and of its associated protein kinase activity. Furthermore, these cells contained high levels of phosphotyrosine residues, a biochemical marker associated with cellular transformation induced by certain retroviruses including ST-FeSV. These results, taken together, strongly support the concept that only those ST-FeSV proviral sequences necessary for ST P85 expression are involved in malignant transformation.  相似文献   

8.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

9.
Nature and distribution of feline sarcoma virus nucleotide sequences.   总被引:34,自引:19,他引:15       下载免费PDF全文
The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene.  相似文献   

10.
11.
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA.  相似文献   

12.
Three series of recombinant DNA clones were constructed, with the bacterial chloramphenicol acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base-pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-bp inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs of the enhancer segment as well as the upstream LTR sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression. Further analyses using chimeric LTR constructs located the presence of a strong negative regulatory element within the region containing the 5' portion of the enhancer and the immediate upstream sequences in the MuLV-related LTRs.  相似文献   

13.
The nucleotide sequences of the Gardner-Arnstein feline sarcoma virus (FeSV) long terminal repeat and the adjacent leader sequences 5' to the viral gag gene were determined. These were compared with homologous portions of Synder-Theilen FeSV and with previously published sequences for Moloney murine sarcoma virus and simian sarcoma virus proviral DNA. More than 75% of the residues in the FeSV R and U5 regions were homologous to sequences within the same regions of the other viral long terminal repeats. Unexpectedly, alignment of the FeSV sequences with those of the Moloney murine sarcoma and simian sarcoma viruses showed similar extents of homology within U3. The homologous U3 regions included the inverted repeats, a single set of putative enhancer sequences, corresponding to a "72-base-pair" repeat, and sequences, including the CAT and TATA boxes, characteristic of eucaryotic promotors. The 5' leader sequences of both FeSV strains included a binding site for prolyl tRNA and a putative splice donor sequence. In addition, the FeSV leader contained a long open reading frame which was adjacent to and in phase with the ATG codon at the 5' end of the FeSV gag gene. The open reading frame could code for a signal peptide of about 7.4 kilodaltons. Our results support the concept that the virogenic portions of both FeSV and simian sarcoma virus were ancestrally derived from viruses of rodent origin, with conservation of regulatory sequences as well as the viral structural genes.  相似文献   

14.
15.
NIH 3T3 cells transformed with unintegrated Harvey sarcoma virus (HSV) linear DNA generally acquired a complete HSV provirus. Infection of these transformed cells with Moloney murine leukemia helper virus was followed by release of infectious particles. The HSV provirus within these transfected cells was convalently joined to nonviral DNA sequences and was termed "cell-linked" HSV DNA. The association of this cell-virus DNA sequence with the chromosomal DNA of a transfected cell was unclear. NIH 3T3 cells could also become transformed by transfection with this cell-linked HSV DNA. In this case, the recipient cells generally acquired a donor DNA fragment containing both the HSV provirus and its flanking nonviral sequences. After cells acquired either unintegrated or cell-linked HSV DNA, the newly established provirus and flanking cellular sequences underwent amplifications to between 5 and 100 copies per diploid cell. NIH 3T3 cells transfected with HSV DNA may acquire deleted proviral DNA lacking at least 1.3 kilobase pairs from the right end of full-length HSV 6-kilobase-pair DNA (corresponding to the 3'-proximal portion of wild-type HSV RNA). Cells bearing such deleted HSV genomes were transformed, indicating that the viral transformation gene lies in the middle or 5'-proximal portion of the HSV RNA genome. However, when these cells were infected with Moloney murine leukemia helper virus, only low levels of biologically active sarcoma virus particles were released. Therefore, the 3' end of full-length HSV RNA was required for efficient transmission of the viral genome.  相似文献   

16.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

17.
BALB/c mouse sarcoma virus (BALB-MSV) is a spontaneously occurring transforming retrovirus of mouse origin. The integrated form of the viral genome was cloned from the DNA of a BALB-MSV-transformed nonproducer NRK cell line in the Charon 9 strain of bacteriophage lambda. In transfection assays, the 19-kilobase-pair (kbp) recombinant DNA clone transformed NIH/3T3 mouse cells with an efficiency of 3 X 10(4) focus-forming units per pmol. Such transformants possessed typical BALB-MSV morphology and released BALB-MSV after helper virus superinfection. A 6.8-kbp DNA segment within the 19-kbp DNA possessed restriction enzyme sites identical to those of the linear BALB-MSV genome. Long terminal repeats of approximately 0.6 kbp were localized at either end of the viral genome by the presence of a repeated constellation of restriction sites and by hybridization of segments containing these sites with nick-translated Moloney murine leukemia virus long terminal repeat DNA. A continuous segment of at least 0.6 and no more than 0.9 kbp of helper virus-unrelated sequences was localized toward the 3' end of the viral genome in relation to viral RNA. A probe composed of these sequences detected six EcoRI-generated DNA bands in normal mouse cell DNA as well as a smaller number of bands in rat and human DNAs. These studies demonstrate that BALB-MSV, like previously characterized avian and mammalian transforming retroviruses, arose by recombination of a type C helper virus with a well-conserved cellular gene.  相似文献   

18.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

19.
Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.  相似文献   

20.
Retroviral vectors containing human FMS protooncogene cDNA were reconfigured to allow single-step excision and reinsertion of restriction fragments encoding short segments of the extracellular domain of the colony-stimulating factor 1 receptor (CSF-1R). Fragments ligated into M13 bacteriophages were subjected to random chemical mutagenesis on both strands and recloned into the parental vector to create libraries of FMS genes containing mutations restricted to predefined target cassettes. Transfection of retroviral vector libraries into NIH/3T3 cells gave rise to transformed foci from which cellular DNA was amplified by the polymerase chain reaction (PCR), using primers flanking the mutagenized target sequences. Amplified fragments from individual primary transformants were recloned into intact FMS vector plasmids, and those with transforming activity were subjected to nucleotide sequence analysis. Alternatively, retroviruses rescued from transformed cells by superinfection with helper virus were used to generate secondary transformants containing unique copies of proviral DNA, whose sequences were determined after PCR amplification. Novel activating mutations were identified within sequences separating the third and fourth immunoglobulin-like loops, as well as within non-covalently stabilized loop 4 of the CSF-1R extracellular domain. Thus, FMS mutations able to convert human CSF-1R to an active oncoprotein are not restricted to those previously identified at codon 301. This approach should be generally applicable for defining activating mutations in related growth factor receptors, including those for platelet-derived growth factor and Steel factor (KIT ligand), in which ligand-independent oncoprotein variants have not been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号