首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new algorithm to optimize reactive power procurement through commercial transactions considering system voltage security. The proposed algorithm minimizes reactive power provision and transmission loss costs in addition to maximizing system voltage security margin through a multiobjective function. In order to maintain the voltage profile of power system during sever contingencies or due to load uncertainty, all voltage control areas (VCA) of the system are detected and then optimal reactive power reserve is provided for each VCA during the market settlement. A four-stage multiobjective mathematical programming method is proposed to settle the reactive power market. The proposed algorithm has been applied on IEEE-RTS test system. The simulation results show the effectiveness of the proposed algorithm for reactive power market management.  相似文献   

2.
This paper presents a day-ahead reactive power market which is cleared in the form of multiobjective context. Total payment function (TPF) of generators, representing the payment paid to the generators for their reactive power compensation, is considered as the main objective function of reactive power market. Besides that, voltage security margin, overload index, and also voltage drop index are the other objective functions of the optimal power flow (OPF) problem to clear the reactive power market. A Multiobjective Mathematical Programming (MMP) formulation is implemented to solve the problem of reactive power market clearing using a fuzzy approach to choose the best compromise solution according to the specific preference among various non-dominated (pareto optimal) solutions. The effectiveness of the proposed method is examined based on the IEEE 24-bus reliability test system (IEEE 24-bus RTS).  相似文献   

3.
针对风电电压波动的问题,文章基于风电机组无功裕度预测,提出了一种风电场无功分层控制策略。该策略首先以并网点电压偏差和线路有功损耗最小为目标,使用二次规划算法在线实时求解最优并网电压,进而求解风电场无功参考值;其次,采用EWT-LSSVM预测算法进行风电功率预测,并提出预测功率校正方法实时修正预测功率,精确求解风电机组的无功裕度预测值;最后,以风电机组的出口电压波动最小和预测无功裕度最大为无功分配依据,实现风电场的无功电压闭环控制。仿真结果表明,所提控制策略能够提高风电功率预测的精确性和时效性,降低了风电机组出口电压波动性,同时为风电场预留出充足的无功裕度。  相似文献   

4.
考虑风电输出功率和负荷功率的随机波动性,建立了风电和负荷的随机模型。采用卷积计算和Cornish-Fisher级数展开来处理随机性因素,从而完成概率潮流计算;并建立以降低成本-效益比值和电压稳定指标L为目标的综合无功优化模型,基于概率潮流和多Agent系统的混沌粒子群算法(MACPSO)对该配电网进行无功优化。IEEE 33节点算例分析表明,所提无功优化求解策略有效可行,同时所提算法在无功优化中具有一定优势。  相似文献   

5.
This paper presents a new stochastic framework for clearing of day-ahead reactive power market. The uncertainty of generating units in the form of system contingencies are considered in the reactive power market-clearing procedure by the stochastic model in two steps. The Monte-Carlo Simulation (MCS) is first used to generate random scenarios. Then, in the second step, the stochastic market-clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. In each of these deterministic optimization problems, the objective function is total payment function (TPF) of generators which refers to the payment paid to the generators for their reactive power compensation. The effectiveness of the proposed model is examined based on the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS).  相似文献   

6.
In this paper, a day‐ahead planning algorithm for a multi‐reservoir hydropower system coordinated with wind power is developed. Coordination applies to real situations, where wind power and hydropower are owned by different utilities, sharing the same transmission lines, although hydropower has priority for transmission capacity. Coordination is thus necessary to minimize wind energy curtailments during congestion situations. The planning algorithm accounts for the uncertainty of wind power forecast. Only planning for the spot market is considered. Once the production bid is placed on the market, it cannot be changed. The solution of the stochastic optimization problem should, therefore, fulfill the transmission constraints for all wind power production scenarios. An evaluation algorithm is also developed to quantify the impact from the coordinated planning in the long run. The developed planning algorithm and the evaluation algorithm are applied in a case study. The results are compared with uncoordinated operation. The results of the case study show that coordination with wind power brings additional income to the hydropower utility and leads to significant reduction of wind energy curtailments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
论述了风电容量在占局部电网相当比例时,风电机组的无功功率调整与电网电压之间的关系,对于定速和变速风电机组的运行特性做了分析,提出了在需要做无功功率调整时风电机组应能满足的特殊要求。  相似文献   

8.
The aim of this paper is to quantify the cost of the provision of voltage control by wind power generation. A methodology for evaluating the economic impact of providing different types of voltage control is proposed. This evaluation examines the increase in costs caused by the change in active power losses due to the provision of wind farms voltage control. These losses are computed for different controllers: (a) wind farms are operated at a fixed power factor, (b) wind farms provide proportional voltage control, and (c) wind farms provide reactive power to minimize power losses. Furthermore, these three possibilities are compared with the option of adding flexible alternating current transmission system devices, which are another alternative for supporting the grid by controlling voltage. The methodology outlined is applied to a real and representative Spanish wind harvesting network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
由于风机的无功耗变,电网电压稳定性随着风力渗透的增加而降低.针对风电场接入的配电网系统无功优化调度问题,本文提出了一种基于ADMM算法的两级无功优化调度方法.与现有的无功优化控制方法相比,该方法采用两阶段优化结构实现分布式无功优化调度.此外,在分区概念下,不需要一致性协议来解决优化问题.该方法在控制设计中也考虑了各个风...  相似文献   

10.
Optimal reactive power dispatch (ORPD) problem is an important problem in the operation of power systems. It is a nonlinear and mixed integer programming problem, which determines optimal values for control parameters of reactive power producers to optimize specific objective functions while satisfying several technical constraints. In this paper, stochastic multi-objective ORPD (SMO-ORPD) problem is studied in a wind integrated power system considering the loads and wind power generation uncertainties. The proposed multi objective optimization problem is solved using ε-constraint method, and fuzzy satisfying approach is employed to select the best compromise solution. Two different objective functions are considered as follow: 1) minimization of the active power losses and 2) minimization of the voltage stability index (named L-index). In this paper VAR compensation devices are modeled as discrete variables. Moreover, to evaluate the performance of the proposed method for solution of multi-objective problem, the obtained results for deterministic case (DMO-ORPD), are compared with the available methods in literature. The proposed method is examined on the IEEE-57 bus system. The proposed models are implemented in GAMS environment. The numerical results substantiate the capability of the proposed SMO-ORPD problem to deal with uncertainties and to determine the best settings of control variables.  相似文献   

11.
Large integration of intermittent wind generation in power system has necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. This paper presents a novel framework on the basis of a combination of stochastic dynamic programming (SDP) algorithm and game theory to study the impacts of different regulatory interventions to promote wind power investment in generation expansion planning. In this study, regulatory policies include Feed-in-Tariff (FIT) incentive, quota and tradable green certificate. The intermittent nature and uncertainties of wind power generation will cause the investors encounter risk in their investment decisions. To overcome this problem, a novel model has been derived to study the regulatory impacts on wind generation expansion planning. In our approach, the probabilistic nature of wind generation is modeled. The model can calculate optimal investment strategies, in which the wind power uncertainty is included. This framework is implemented on a test system to illustrate the working of the proposed approach. The result shows that FITs are the most effective policy to encourage the rapid and sustained deployment of wind power. FITs can significantly reduce the risks of investing in renewable energy technologies and thus create conditions conducive to rapid market growth.  相似文献   

12.
针对现阶段含风电发电系统可靠性评估中尚未考虑无功功率影响的缺陷,在风电场常规可靠性评估模型的基础上,考虑了无功电源故障的影响,建立了风电场综合可靠性评估模型,定义了表征系统局部无功不足的可靠性指标。采用三级切负荷策略对计及有功功率短缺、无功功率短缺、电压越限的含风电场发电系统进行了可靠性评估。根据第三级切负荷策略确定了最佳无功补偿位置,应用就地无功补偿代替负荷切除,有效解决了电压越限问题。并以太原220kV系统为例,验证了该方法的有效性,为确定最佳无功补偿位置提供了依据。  相似文献   

13.
Renewable energy sources, such as wind and photovoltaic solar, have added additional uncertainty to power systems. These sources, further to the conventional sources of uncertainty due to stochastic nature of both the load and the availability of generation resources and transmission assets, make clear the limitations of the conventional deterministic power flow in power system analysis and security assessment applications. In order to manage uncertainties, probabilistic approaches can provide a valuable contribution.In this paper, we propose a new scheme for probabilistic security assessment. The model can deal with various types of probability distributions modeling power injections and can explicitly represent the effects on system security of correlation among nodal power injections (such as wind power) and of contingencies due to branch and generating unit outages. In addition, the steady-state behavior of the frequency regulation is explicitly included in the model. A new approach to deal with current limits is also proposed.Extensive testing on both the modified IEEE-14 bus test system and the Sicilian power system indicates good performance of the proposed approach in comparison with the result obtained by the computationally more demanding Monte Carlo approach.  相似文献   

14.
Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner.  相似文献   

15.
Wind power producers participating in today's electricity markets face significant variability in revenue streams, with potential high losses mostly due to wind's limited predictability and the intermittent nature of the generated electricity. In order to further expand wind power generation despite such challenges, it is important to maximize its market value and move decisively towards economically sustainable and financially viable asset management. In this paper, we introduce a decision‐making framework based on stochastic optimization that allows wind power producers to hedge their position in the market by trading physically settled options in futures markets in conjunction with their participation in the short‐term electricity markets. The proposed framework relies on a series of two‐stage stochastic optimization models that identify a combined trading strategy for wind power producers actively participating in both financial and day‐ahead electricity markets. The proposed models take into consideration penalties from potential deviations between day‐ahead market offers and real‐time operation and incorporates different preferences of risk aversion, enabling a trade‐off between the expected profit and its variability. Empirical analysis based on data from the Nordic region illustrates high efficiency of the stochastic model and reveals increased revenues for both risk neutral and risk averse wind producers opting for combined strategies.  相似文献   

16.
针对电网三相对称故障条件下风电场电压不稳定的问题,文章提出了一种基于神经元的风储联合系统无功功率自适应控制策略,该策略以风储联合系统公共耦合点(Point of Common Coupling,PCC)的电压和电流为控制器的输入,采用Hebb学习算法作为自适应律,以获得准确的无功补偿。通过动态调整控制器的参数,使储能系统协调风电达到自适应输出无功功率的效果,提高系统在电网故障下的电压稳定性和风电故障穿越能力。最后,利用Matlab/Simulink仿真验证了该控制策略的有效性和正确性,与常规PI控制策略相比,文章所提出的控制策略可使风储系统迅速提供无功功率,PCC点的电压得到明显上升。  相似文献   

17.
Within an existing transmission network, this paper considers the problem of identifying the wind power plants to be built by a wind power investor to maximize its profit. For this analysis a future target year is considered and the loads at different buses are represented by stepwise load–duration curves. The stochastic nature of both load and wind is represented via scenarios. The considered electric energy system operates under a pool-market arrangement and each producer/consumer is paid/pays the Local Marginal Price (LMP) of the bus at which it is located. The higher the wind penetration is, the lower the resulting LMPs. To tackle this problem a stochastic bilevel model is proposed, whose upper-level represents the wind investment and operation decisions with the target of maximizing profits; and its lower-level represents the market clearing under differing load and wind conditions and provides LMPs. This model can be recast as a mixed-integer linear programming problem solvable using commercially available branch-and-cut solvers. The proposed model is illustrated using an example and two case studies.  相似文献   

18.
Offshore wind power plants (WPPs) built near each other but far from shore usually connect to the main grid by a common high‐voltage DC (HVDC) transmission system. In the resulting decoupled offshore grid, the wind turbine converters and the high‐voltage DC voltage‐source converter share the ability to inject or absorb reactive power. The overall reactive power control dispatch influences the power flows in the grid and hence the associated power losses. This paper evaluates the respective power losses in HVDC‐connected WPP clusters when applying 5 different reactive power control strategies. The case study is made for a 1.2‐GW–rated cluster comprising 3 WPP and is implemented in a combined load flow and converter loss model. A large set of feasible operating points for the system is analyzed for each strategy. The results show that a selection of simulations with equal wind speeds is sufficient for the annual energy production comparison. It is found that the continuous operation of the WPPs with unity power factor has a superior performance with low communication requirements compared with the other conventional strategies. The optimization‐based strategy, which is developed in this article, allows a further reduction of losses mainly because of the higher offshore grid voltage level imposed by the high‐voltage DC voltage‐source converter. Reactive power control in HVDC‐connected WPP clusters change significantly the overall power losses of the system, which depend rather on the total sum of the injected active power than on the variance of wind speeds inside the cluster.  相似文献   

19.
In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and “intelligent” components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also consider more stochastic aspects such as variable grid’s topology. Results of the proposed strategy obtained on the networks of IEEE 30-bus and IEEE 118-bus systems demonstrate the effectiveness of the proposed strategy.  相似文献   

20.
应用STATCOM提高风电场的电压稳定性   总被引:6,自引:3,他引:3  
风能具有随机性和间歇性,大规模风电场接入电网时会对系统的稳定性产生一定的影响。建立了风力发电机组模型,仿真分析了利用STATCOM改善风电场(由变桨距定速异步感应发电机组成)的静态和暂态稳定性。仿真结果表明,STATCOM可以有效地改善风电场的稳定性,在系统故障后提供无功支撑,提高了风电场的低电压穿越能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号