首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An example of a direct axial interaction of a platinum(II) atom with a Mo(2) core through a uniquely designed tridentate ligand 6-(diphenylphosphino)-2-pyridonate (abbreviated as pyphos) is described. Treatment of PtX(2)(pyphosH)(2) (2a, X = Cl; 2b, X = Br; 2c, X = I) with a 1:1 mixture of Mo(2)(O(2)CCH(3))(4) and [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](2+) (3a) in dichloromethane afforded the linear trinuclear complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCH(3))(2)](2) (4a, X = Cl; 4b, X = Br; 4c, X = I). The reaction of [Mo(2)(O(2)CCMe(3))(2)(NCCH(3))(4)](2+) (3b) with 2a-c in dichloromethane afforded the corresponding pivalato complexes [Mo(2)PtX(2)(pyphos)(2)(O(2)CCMe(3))(2)](2) (5a, X = Cl; 5b, X = Br; 5c, X = I), whose bonding nature is discussed on the basis of the data from Raman and electronic spectra as well as cyclic voltammograms. The linear trinuclear structures in 4b and 5a-c were confirmed by NMR studies and X-ray analyses: 4b, monoclinic, space group C2/c, a = 34.733(4) ?, b = 17.81(1) ?, c = 22.530(5) ?, beta = 124.444(8) degrees, V = 11498(5) ?(3), Z = 8, R = 0.060 for 8659 reflections with I > 3sigma(I) and 588 parameters; 5a, triclinic, space group P&onemacr;, a = 13.541(3) ?, b = 17.029(3) ?, c = 12.896(3) ?, alpha = 101.20(2) degrees, beta = 117.00(1) degrees, gamma = 85.47(2) degrees, V = 2599(1) ?(3), Z = 2, R = 0.050 for 8148 reflections with I > 3sigma(I) and 604 parameters; 5b, triclinic, space group P&onemacr;, a = 12.211(2) ?, b = 20.859(3) ?, c = 10.478(2) ?, alpha = 98.88(1) degrees, beta = 112.55(2) degrees, gamma = 84.56(1) degrees, V = 2433.3(8) ?(3), Z = 2, R = 0.042 for 8935 reflections with I > 3sigma(I) and 560 parameters; 5c, monoclinic, space group P2(1)/n, a = 13.359(4) ?, b = 19.686(3) ?, c = 20.392(4) ?, beta = 107.92(2) degrees, V = 5101(2) ?(3), Z = 4, R = 0.039 for 8432 reflections with I > 3sigma(I) and 560 parameters.  相似文献   

2.
The syntheses, crystal structures determined by single-crystal X-ray diffraction, and characterizations of new Mo(6) cluster chalcobromides and cyano-substituted compounds with 24 valence electrons per Mo(6) cluster (VEC = 24), are presented in this work. The structures of Cs(4)Mo(6)Br(12)S(2) and Cs(4)Mo(6)Br(12)Se(2) prepared by solid state routes are based on the novel [(Mo(6)Br(i)(6)Y(i)(2))Br(a)(6)](4)(-) (Y = S, Se) discrete units in which two chalcogen and six bromine ligands randomly occupy the inner positions, while the six apical ones are fully occupied by bromine atoms. The interaction of these two compounds with aqueous KCN solution results in apical ligand exchange giving the two first Mo(6) cyano-chalcohalides: Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O and Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O. Their crystal structures, built from the original [(Mo(6)Br(i)(6)Y(i)(2))(CN)(a)(6)](4)(-) discrete units, will be compared to those of the two solid state precursors and other previously reported Mo(6) cluster compounds. Their redox properties and (77)Se NMR characterizations will be presented. Crystal data: Cs(4)Mo(6)Br(12)S(2), orthorhombic, Pbca (No. 61), a = 11.511(5) A, b = 18.772(5) A, c = 28.381 A (5), Z = 8; Cs(4)Mo(6)Br(12)Se(2), Pbca (No. 61), a = 11.6237(1) A, b = 18.9447(1) A, c = 28.4874(1) A, Z = 8; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.1969(4) A, Z = 1; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.235(5) A, Z = 1.  相似文献   

3.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

4.
Very recently it was shown that the metalloid cluster compound {Ge(9)[Si(SiMe(3))(3)](3)}(-)1 can be used for subsequent reactions as the shielding of the cluster core is rather incomplete. So the reaction of 1 with Cr(CO)(3)(CH(3)CN)(3) leads to a cluster enlargement where the chromium atom is incorporated into the cluster core. Here further applications of 1 as a flexible ligand in coordination chemistry are presented where the reaction of 1 with Mo(CO)(3)(EtCN)(3) and W(CO)(3)(CH(3)CN)(3) leads to [(CO)(3)MoGe(9)R(3)](-)4 and [(CO)(3)WGe(9)R(3)](-)5 respectively (R = Si(SiMe(3))(3)), showing that 1 can indeed be used as a flexible ligand in coordination chemistry. Structural and electronic properties of the Ge(9)M clusters 4 and 5 are discussed as well as mechanistic aspects of their formation.  相似文献   

5.
Treatment of MoCl(3)(thf)(3) with LiSC(6)H(3)-2,6-(SiMe(3))(2) (LiSAr) resulted in formation of the pi-sandwiched bis-arylthiolato complex, Mo(eta(5)-SC(6)H(3)-2,6-(SiMe(3))(2))(eta(7)-SC(6)H(3)-2,6-(SiMe(3))(2)) (1), while the analogous reaction with LiSC(6)H(3)-2-Ph-6-SiMe(3) afforded the trithiolate complex Mo(SC(6)H(3)-2-Ph-6-SiMe(3))(3) (3). The acetonitrile adduct Mo(SAr)(2)(CH(3)CN)(3) (2) was isolated from the CH(3)CN solution of 1, in which one acetonitrile is coordinated to the metal center in an eta(2)-fashion. Structures of 1, 2, and 3 have been determined by X-ray diffraction.  相似文献   

6.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

7.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

8.
A yellow [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion was prepared as a tetrapropylammonium (Pr(4)N(+)) salt from a 50 mM Mo(VI)-2 mM P(2)O(7)(4-)-4 mM HPO(3)(2-)-0.95 M HCl-60% (v/v) CH(3)CN system at ambient temperature. The (Pr(4)N)(8)[(HPO(3))(2)(P(2)O(7))Mo(30)O(90)] salt crystallized in the orthorhombic space group P(nma) (No. 62), with a = 30.827(2) A, b = 22.8060(15) A, c = 30.928(2) A, V = 21743(3) A(3), and Z = 4. The structure contained a (P(2)O(7))Mo(12)O(42) fragment derived from the removal of each corner-shared Mo(3)O(13) unit in a polar position from a [(P(2)O(7))Mo(18)O(54)](4-) structure, and each side of the (P(2)O(7))Mo(12)O(42) fragment was capped by a B-type (HPO(3))Mo(9)O(24) unit. The [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion was characterized by voltammetry and IR, UV-vis, and (31)P NMR spectroscopy. Unlike the Keggin and Dawson anions and the parent [(P(2)O(7))Mo(18)O(54)](4-) anion, the [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion exhibited two-electron redox waves in CH(3)CN with and without acid.  相似文献   

9.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

10.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

11.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

12.
[NH(4)](2)Mn(3)(H(2)O)(4)[Mo(CN)(7)](2).4H(2)O (1) has been synthesized by slow diffusion of aqueous solutions containing K(4)[Mo(CN)(7)].2H(2)O, [Mn(H(2)O)(6)](NO(3))(2), and (NH(4))NO(3). Compound 1 crystallizes in the monoclinic C2/c space group. The basic motif of the three-dimensional structure consists of a Mo1-Mn1 gridlike sheet parallel to the bc plane. Two of these sheets are connected through CN-Mn2-NC linkages to form a bilayer reminiscent of the K(2)Mn(3)(H(2)O)(6)[Mo(CN)(7)](2).6H(2)O (2) two-dimensional structure. In 1, [NH(4)](+) cations allow these bilayers to be connected through direct Mo1-CN-Mn1 bridges to form a three-dimensional network, whereas in 2, they are isolated by (H(2)O)K(+) cations. As shown by the magnetic measurements, this increase of dimensionality by counterion substitution induces an enhancement of the ferrimagnetic critical temperature from 39 K in 2 to 53 K in 1.  相似文献   

13.
Treatment of the bmnpa (N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine) ligand with equimolar amounts of Cd(ClO(4))(2).5H(2)O and Me(4)NOH.5H(2)O in CH(3)CN yielded the binuclear cadmium hydroxide complex [((bmnpa)Cd)(2)(mu-OH)(2)](ClO(4))(2).CH(3)CN (1). Complex 1 may also be prepared (a) by treatment of a CH(3)CN solution of (bmnpa)Cd(ClO(4))(2) (2) with 1 equiv of n-BuLi, followed by treatment with water or (b) from 2 in the presence of 1 equiv each of water and NEt(3). The hydroxide derivative 1 is not produced from 2 and water in the absence of an added base. Complex 1 possesses a binuclear structure in the solid state with hydrogen-bonding and CH/pi interactions involving the bmnpa ligand. The overall structural features of 1 differ from the halide derivative [((bmnpa)Cd)(2)(mu-Cl)(2)](ClO(4))(2) (3), particularly in that the Cd(2)(mu-OH)(2) core of 1 is symmetric whereas the Cd(2)(mu-Cl)(2) core of 3 is asymmetric. In acetonitrile solution, 1 behaves as a 1:2 electrolyte and retains a binuclear structure and secondary hydrogen-bonding and CH/pi interactions, whereas 3 is a 1:1 electrolyte, indicating formation of a mononuclear [(bmnpa)CdCl]ClO(4) species in solution. Treatment of 1 with CO(2) in anhydrous CH(3)CN yields the bridging carbonate complex [((bmnpa)Cd)(2)(mu-CO(3))](ClO(4))(2).CH(3)CN (4). Treatment of a chemically similar zinc hydroxide complex, [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2) (benpa = N,N-bis-2-(ethylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine, with CO(2) also results in the formation of a carbonate derivative, [((benpa)Zn)(2)(mu-CO(3))](ClO(4))(2) (5), albeit the coordination mode of the bridging carbonate moiety is different. Treatment of 4 with added water results in no reaction, whereas 5 under identical conditions will undergo reaction to yield the zinc hydroxide complex [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2).  相似文献   

14.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

15.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

16.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

17.
Reactions of Mn(II)(PF(6))(2) and Mn(II)(O(2)CCH(3))(2).4H(2)O with the tridentate facially capping ligand N,N-bis(2-pyridylmethyl)ethylamine (bpea) in ethanol solutions afforded the mononuclear [Mn(II)(bpea)](PF(6))(2) (1) and the new binuclear [Mn(2)(II,II)(mu-O(2)CCH(3))(3)(bpea)(2)](PF(6)) (2) manganese(II) compounds, respectively. Both 1 and 2 were characterized by X-ray crystallographic studies. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 11.9288(7) A, b = 22.5424(13) A, c =13.0773(7) A, alpha = 90 degrees, beta = 100.5780(10 degrees ), gamma = 90 degrees, and Z = 4. Crystals of complex 2 are orthorhombic, space group C222(1), with a = 12.5686(16) A, b = 14.4059(16) A, c = 22.515(3) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, and Z = 4. The three acetates bridge the two Mn(II) centers in a mu(1,3) syn-syn mode, with a Mn-Mn separation of 3.915 A. A detailed study of the electrochemical behavior of 1 and 2 in CH(3)CN medium has been made. Successive controlled potential oxidations at 0.6 and 0.9 V vs Ag/Ag(+) for a 10 mM solution of 2 allowed the selective and nearly quantitative formation of [Mn(III)(2)(mu-O)(mu-O(2)CCH(3))(2)(bpea)(2)](2+) (3) and [Mn(IV)(2)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](3+) (4), respectively. These results have shown that each substitution of an acetate group by an oxo group is induced by a two-electron oxidation of the corresponding dimanganese complexes. Similar transformations have been obtained if 2 is formed in situ either by direct mixing of Mn(2+) cations, bpea ligand, and CH(3)COO(-) anions with a 1:1:3 stoichiometry or by mixing of 1 and CH(3)COO(-) with a 1:1.5 stoichiometry. Associated electrochemical back-transformations were investigated. 2, 3, and the dimanganese [Mn(III)Mn(IV)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](2+) analogue (5) were also studied for their ability to disproportionate hydrogen peroxide. 2 is far more active compared to 3 and 5. The EPR monitoring of the catalase-like activity has shown that the same species are present in the reaction mixture albeit in slightly different proportions. 2 operates probably along a mechanism different from that of 3 and 5, and the formation of 3 competes with the disproportionation reaction catalyzed by 2. Indeed a solution of 2 exhibits the same activity as 3 for the disproportionation reaction of a second batch of H(2)O(2) indicating that 3 is formed in the course of the reaction.  相似文献   

18.
The preparation of additional and useful building blocks for the construction of supramolecular entities with quadruply bonded Mo(2)(4+) units has been explored, and five new mixed-ligand complexes with three types of ligands and various basicities are reported. The ligands used were the DAniF (N,N'-di-p-anisylformamidinate) anion, the acetate anion, and neutral acetonitrile molecules. The formamidinate ligands are the least labile, and the acetonitrile molecules are the most labile. This difference as well as a relatively strong trans directing influence by the formamidinate anions in ligand substitution reactions allows designed synthesis of various mixed-ligand building blocks, including rare pairs of cis and trans isomers. The new compounds are cis-Mo(2)(DAniF)(2)(O(2)CCH(3))(2) (1), trans-Mo(2)(DAniF)(2)(O(2)CCH(3))(2) (2), trans-[Mo(2)(DAniF)(2)(O(2)CCH(3))(CH(3)CN(eq)())(2)]BF(4) (3), trans-[Mo(2)(DAniF)(2)(CH(3)CN(eq)())(4)](BF(4))(2) (4), and [Mo(2)(O(2)CH(3))(CH(3)CN(eq)())(6)(CH(3)CN(ax)())](BF(4))(3) (5), where eq and ax designate equatorial and axial ligands, respectively. A comparison with some previously synthesized complexes is given along with a discussion of the overall reactivity of all compounds.  相似文献   

19.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

20.
The treatment of the dimeric paddle-wheel (PW) compound [Mo(2)(NCCH(3))(10)][BF(4)](4)1 with oxalic acid (0.5 equiv.), 1,1-cyclobutanedicarboxylic acid (1 equiv.), 5-hydroxyisophthalic acid (1 equiv.) (m-bdc-OH) or 2,3,5,6-tetrafluoroterephthalic acid (0.5 or 1 equiv.) leads to the formation of macromolecular dicarboxylate-linked (Mo(2))(n) entities (n = 2, 3, 4). The structure of the compounds depends on the length and geometry of the organic linkers. In the case of oxalic acid, the dimeric compound [(CH(3)CN)(8)Mo(2)(OOC-COO)Mo(2)(NCCH(3))(8)][BF(4)](6)2 is formed selectively, whereas the use of 2,3,5,6-tetrafluoroterephthalic acid affords the square-shaped complex [(CH(3)CN)(6)Mo(2)(OOC-C(6)F(4)-COO)](4)[BF(4)](8)3. Bent linkers with a bridging angle of 109° and 120°, respectively, lead to the formation of the molecular loop [(CH(3)CN)(6)Mo(2)(OOC-C(4)H(6)-COO)](2)[BF(4)](4)4 and the bowl-shaped molecular triangle [(CH(3)CN)(6)Mo(2)(m-bdc-OH)](3)[BF(4)](6)5. All complexes are characterised by X-ray single crystal diffraction, NMR ((1)H, (11)B, (13)C and (19)F) and UV-Vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号