首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this study, we evaluated the extent to which 2000-m rowing ergometer performance times predicted final rankings at the World Rowing Championships in a sample of 638 rowers of both sexes and body-mass classifications (i.e. open-category and lightweight rowers). Rowing ergometer performance times were examined using a questionnaire, and in 17 of 23 events they were positively correlated (P ≤ 0.049) with the final rankings at the Championships. The highest correlations were for the ergometer performance times achieved by rowers in lightweight men's single sculls (r = 0.78; P = 0.005), women's single sculls (r = 0.75; P = 0.002), men's single sculls (r = 0.72; P = 0.004), and lightweight men's double sculls (r = 0.72; P < 0.001). We used linear regression to establish regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event in which there was a correlation greater than r = 0.50. Although correlations in 12 events met this criterion, the large standard errors of the estimate hindered ranking predictions in all of the studied events. Regression equations could be used to determine the most probable 2000-m ergometer performance time for a rower to achieve specific rankings at the World Rowing Championships.  相似文献   

2.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (VO2max), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, VO2max and knee extension correlated with 2000-m performance time (r= -0.41, -0.43 and -0.40, respectively; P< 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, VO2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

3.
High retest reliability is desirable in tests used to monitor athletic performance, but the reliability of many popular tests has not been established. The aim of this study was to determine the reliability of performance of a 2000-m time-trial lasting approximately 7 min performed on a Concept II rowing ergometer. Eight well-trained rowers (peak oxygen uptake 61+/-5 ml x kg(-1) x min(-1); mean +/- standard deviation) performed the time-trials on three occasions at 3-day intervals. Mean power (313+/-38 W in trial 1) improved by 2.3% (95% confidence interval 0.1 to 4.5%) in trial 2 and by a further 0.9% (-1.4 to 3.3%) in trial 3. The variability of performance for individual rowers expressed as a coefficient of variation for mean power was 2.0% (1.3 to 3.1%), and the retest correlation was 0.96 (0.87 to 0.99). Variability and changes in performance expressed as time to complete the test were approximately one-third those of mean power, apparently because simulated velocity is proportional to the cube root of power on this ergometer. Such high reliability makes this combination of ergometer, athlete and test protocol very suitable for monitoring rowing performance and for investigating factors that affect performance in short, high-intensity endurance events.  相似文献   

4.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

5.
Abstract

The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake ([Vdot]O2max), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute [Vdot]O2max was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

6.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (V O 2m ax ), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, V O 2max and knee extension correlated with 2000-m performance time (r = -0.41, -0.43 and-0.40, respectively; P 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, V O 2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

7.
Abstract

Rowers sit on a seat that slides relative to the boat/ergometer. If a rower lifts him or herself from this sliding seat at any time, the seat will move away from under them and the rowing action is disrupted. From a mechanical perspective, it is clear that the need for the rower to remain in contact with the sliding seat at all times imposes position-dependent constraints on the forces exerted at the oar handle and the footstretcher. Here we investigate if the mechanical power output during rowing, which is strongly related to these forces, might be improved if the contact with the sliding seat was of no concern to the rower. In particular, we examine if elimination of these constraints by strapping the rower to the sliding seat leads to an increase in performance during the start on a standard rowing ergometer. Eleven well-trained female rowers performed 5-stroke starts in normal and strapped conditions. Handle force, vertical seat force, footstretcher force, and handle kinematics were recorded, from which mechanical power and work output were calculated. Most of the relevant mechanical variables differed significantly between the normal and strapped conditions. Most importantly, mechanical power output (averaged over the 5-stroke start) in the strapped condition was 12% higher than in the normal condition. We conclude that strapping a rower's pelvis to the sliding seat allows more vigorous execution of the stroke phases, resulting in a substantial improvement in performance during the start of ergometer rowing.  相似文献   

8.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 - 3.6 years, height 1.68 - 0.54 m, body mass 67.1 - 11.7 kg; mean - s ) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake ( V O 2 ) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest V O 2 measured during the test was recorded as V O 2max (mean = 3.18 - 0.35 l· min -1 ). Peak power (380 - 63.2 W) and mean power (368 - 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 - 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), V O 2max (l· min -1 ), V O 2max (ml·kg -1 ·min -1 ), V O 2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent V O 2max ) and V E max (l·min -1 ) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time 2000 =- 0.163 (Power)14.213 ·( V O 2max l· min -1 ) + 0.738· (Fatigue) + 567.259 ( R 2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while V O 2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

9.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

10.
为揭示赛艇运动员各项运动素质与2 000 m测功仪成绩的关系.根据训练计划安排,定期、多次对优秀女子赛艇运动员的相关运动素质及专项2 000 m测功仪成绩进行系统测试.研究结果显示,在第1次测试时,全力2 000 m测功仪成绩与全力5 000 m(r=0.94)、全力500 m测功仪(r=0.74)和最大力量卧拉(r=-0.66)、最大力量深蹲(r=-0.56)、最大力量卧推(r=-0.54)成绩高度相关;全力2 000 m测功仪成绩与全力100 m测功仪成绩不呈显著性相关(r=0.46,P>0.05).在第2次测试时,全力2 000 m测功仪成绩与全力5 000 m(r=0.93)、全力500 m(r=0.87)、全力100 m测功仪(r=0.73)和最大力量卧拉(r=-0.68)成绩高度相关.全力2 000 m测功仪成绩与最大力量卧推(r=-0.48,P>0.05)、最大力量深蹲(r=-0.18,P>0.05)成绩不呈显著性相关.在第3次测试时,全力2 000 m测功仪成绩与全力500 m(r=0.92)、全力5 000 m测功仪(r=0.85)和最大力量卧拉(r=-0.62)、全力100 m测功仪(r=0.58)成绩高度相关;全力2 000 m测功仪成绩与最大力量卧推(r=-0.32,P>0.05)和最大力量深蹲(r=-0.38,P>0.05)成绩不呈显著性相关.研究结果说明优秀女子赛艇运动员各项运动素质与测功仪2 000m成绩之间是一个动态的关系,不是一成不变的.  相似文献   

11.
The primary purpose of this study was to determine if muscular endurance is affected by referenced waist circumference groupings, independent of body mass and subcutaneous abdominal fat, in women. This study also explored whether selected body composition measures were associated with muscular endurance. Eighty-four women were measured for height, weight, body mass index (BMI), waist circumference (WC), and abdominal skinfold thickness (SFAB) and performed 60-s sit-ups (SU) and maximal push-ups (PU) tests. Mean differences in SU and PU scores were tested across three groups based on WC as follows: WCG1 < 70 cm; WCG2 between 70 and 89 cm; WCG3 > or = 90 cm. There were no significant differences in SU and PU scores between WCG1 and WCG2. WCG3 had significantly lower SU and PU scores compared to the other groups. After adjusting for the influence of SFAB, BMI, and weight, the differences disappeared. The regression analysis revealed a two-variable (BMI and SFAB) model that accounted for the variation in SU performance. For PU, only BMI loaded into the regression model. The results of this study suggest that women with a WC > or = 90 cm have decreased muscular endurance compared to their lower WC counterparts. This difference is related to higher body masses.  相似文献   

12.
We evaluated (1) the test-retest reliability of the Wingate test conducted on a rowing ergometer, and (2) the sensitivity of this test in determining the differences in performance attained by 12- to 18-year-old rowers. Altogether, 297 male rowers aged 12.0-18.9 years (mean?±?s: 14.8?±?1.7) completed a maximal 30-s test on a rowing ergometer, and 80 rowers representing all age groups were retested after 5-7 days. No change was evident in participants' performance in terms of mean power output (P?=?0.726; Cohen's d?=?0.04), maximal power output (P?=?0.567; Cohen's d?=?0.06), and minimum power output (P?=?0.318; Cohen's d?=?0.11) in the second test. The intra-class correlation coefficients were high (≥0.973) and coefficients of variation were low (≤7.3%). A series of analyses of variance were used to compare the performances among 12- to 18-year-old rowers, and age-related increases in performance were evident (P?相似文献   

13.
Abstract

We evaluated (1) the test–retest reliability of the Wingate test conducted on a rowing ergometer, and (2) the sensitivity of this test in determining the differences in performance attained by 12- to 18-year-old rowers. Altogether, 297 male rowers aged 12.0–18.9 years (mean ± s: 14.8 ± 1.7) completed a maximal 30-s test on a rowing ergometer, and 80 rowers representing all age groups were retested after 5–7 days. No change was evident in participants' performance in terms of mean power output (P = 0.726; Cohen's d = 0.04), maximal power output (P = 0.567; Cohen's d = 0.06), and minimum power output (P = 0.318; Cohen's d = 0.11) in the second test. The intra-class correlation coefficients were high (≥0.973) and coefficients of variation were low (≤7.3%). A series of analyses of variance were used to compare the performances among 12- to 18-year-old rowers, and age-related increases in performance were evident (P < 0.001; Cohen's d = 1.91–1.96). The age-related increases in performance were similar, although reduced, when the effects of body mass were partitioned out when using analysis of covariance (P < 0.001; Cohen's d = 0.82–0.85). The results suggest that: (1) the described test is reliable and can be used for maximal-intensity exercise assessment in youth rowing, and (2) it discriminates performance among 12- to-18-year-old rowers.  相似文献   

14.
Abstract

The aim of this study was to examine the effect of menstrual cycle phase on 2000-m rowing ergometry performance. Since high concentrations of oestrogen, indicative of the mid-luteal phase of the menstrual cycle, tend to decrease glycogen utilization and reduce blood lactate concentration, it was predicted that time taken to complete a 2000-m rowing trial would be shorter in the mid-luteal phase. Ten eumenorrhoeic, recreationally trained, female volunteers (mean age 33.0 years, s=7.1) completed 2000-m time trials on a Concept 2 rowing ergometer, in both the mid-follicular and mid-luteal phases of their menstrual cycle. In each phase, a 3-min incremental rowing protocol was used to determine a blood lactate concentration of 4 mmol · l?1 (T lac-4mM) and maximum oxygen consumption (VO2max); a five-stroke maximal test was used to establish maximal power. Order of testing was randomized for menstrual cycle phase. Variables (T lac-4mM, VO2max, maximal power) were correlated with speed in the 2000-m time trials, and the effect of menstrual cycle phase on these variables was examined. A blood lactate concentration of 4 mmol · l?1 occurred at a significantly higher mean exercise intensity (mid-luteal vs. mid-follicular: 169.1 W, s=39.1 vs. 159.0 W, s=38.3; P=0.033), heart rate (179 beats · min?1, s=9 vs. 173 beats · min?1, s=11; P=0.0047), and oxygen consumption (2.64 litres · min?1, s=0.66 vs. 2.42 litres · min?1, s=0.62; P=0.04) in the mid-luteal phase than in the mid-follicular phase. There was no significant difference (P=0.11) in 2000-m time trial speed according to menstrual cycle phase. In conclusion, although T lac-4mM differed due to menstrual cycle phase, 2000-m rowing performance was unaffected. Further research into the effects of menstrual cycle on rowing performance of a longer duration, among a more homogenous group of females, is recommended.  相似文献   

15.
The aim of this study was to determine the relationship between discus throwing performance and the following technical parameters: hip–shoulder and shoulder–arm separation, trunk forward–backward tilt, throwing-arm elevation angles, and the absolute and relative throwing procedure phase times. Videographic data of 51 male and 53 female discus throwers' competitive performances were captured during major meets. The three-dimensional coordinates of 21 body landmarks and the discus were obtained for each thrower's best trial using direct linear transformation. The technical parameters were reduced from the three-dimensional data at six critical instants during the throwing procedure. Hierarchical stepwise multiple regression analyses were performed to determine the relative influence of linear combinations of the technical parameters on discus throwing performance. Specific techniques associated with linear combinations of certain technical parameters were identified using canonical correlations. Males and females were analysed separately. Suggestions for controlling the height of release and the vertical component of the speed of release using an effective technique are made.  相似文献   

16.
The aim of this study was to determine the relationship between discus throwing performance and the following technical parameters: hip-shoulder and shoulder-arm separation, trunk forward-backward tilt, throwing-arm elevation angles, and the absolute and relative throwing procedure phase times. Videographic data of 51 male and 53 female discus throwers' competitive performances were captured during major meets. The three-dimensional coordinates of 21 body landmarks and the discus were obtained for each thrower's best trial using direct linear transformation. The technical parameters were reduced from the three-dimensional data at six critical instants during the throwing procedure. Hierarchical stepwise multiple regression analyses were performed to determine the relative influence of linear combinations of the technical parameters on discus throwing performance. Specific techniques associated with linear combinations of certain technical parameters were identified using canonical correlations. Males and females were analysed separately. Suggestions for controlling the height of release and the vertical component of the speed of release using an effective technique are made.  相似文献   

17.
This case study reports the results of a 12-year (2005–2016) follow-up study of two Olympic champion rowers. The rowers were prospective athletes at the junior level when the study began, and we monitored their relevant physiological and performance data annually. Our findings indicated that their V?O2max gradually increased up to about 22 years of age and leveled off at a value of approximately 7 l·min?1 with minimal fluctuations thereafter. However, the variables that directly influence the V?O2max changed. There was an age-related decline in maximal heart rate of about 0.5 beats·year?1, while oxygen pulse, which serves as an indirect measure of stroke volume, correspondingly increased by about 1 ml O2·beat?1 per year, allowing the athletes to maintain exceptional V?O2max values. Maximal minute power of the studied rowers, derived each year from their ramp-wise tests, closely resembled the mean power output sustained during the 2000-m all-out tests on a rowing ergometer. A 12-year improvement of 28% and 33% occurred for the mean power output sustained over 2000 and 6000-m on a rowing ergometer, respectively. The findings contribute to the body of knowledge on athletes representing the true elites of their respective sports.  相似文献   

18.
The aim of this study was to examine biomechanical variables relating to the force production of men's Lightweight (LW) and Heavyweight (HW) rowing pairs. Seven HW and seven LW coxless pairs were studied under a range of stroke rates, from 20 spm to race rating (average of 33.7 spm for the HWs and 33.9 spm for the LWs). Each crew was equipped with biomechanical apparatus allowing the measurement of gate force, horizontal oar angle, and boat velocity. The HW crews exhibited significantly higher (p < 0.05) values for all variables examined, at all rates. Peak handle force was 26.2% to 30.2% higher in the HW group. Average handle force ranged from 18.7% to 22.1% higher than the LW group. Work per stroke was found to be 26% to 28% higher for the HW crews, and Power Per Kilogram was also greater for the HW crews, from 24.0% to 29.2%. The LWs were observed to be consistently, but not significantly, slower than the HWs (from 96.9% at the race situation, to 98.7% at 28 spm). These observations are important when considering biomechanical performance indicators in rowing, as significant changes in performance indicators may lead to only minimal alteration in boat velocity.  相似文献   

19.
The aim of this study was to examine biomechanical variables relating to the force production of men's Lightweight (LW) and Heavyweight (HW) rowing pairs. Seven HW and seven LW coxless pairs were studied under a range of stroke rates, from 20 spm to race rating (average of 33.7 spm for the HWs and 33.9 spm for the LWs). Each crew was equipped with biomechanical apparatus allowing the measurement of gate force, horizontal oar angle, and boat velocity. The HW crews exhibited significantly higher (p < 0.05) values for all variables examined, at all rates. Peak handle force was 26.2% to 30.2% higher in the HW group. Average handle force ranged from 18.7% to 22.1% higher than the LW group. Work per stroke was found to be 26% to 28% higher for the HW crews, and Power Per Kilogram was also greater for the HW crews, from 24.0% to 29.2%. The LWs were observed to be consistently, but not significantly, slower than the HWs (from 96.9% at the race situation, to 98.7% at 28 spm). These observations are important when considering biomechanical performance indicators in rowing, as significant changes in performance indicators may lead to only minimal alteration in boat velocity.  相似文献   

20.
The present work compares the efficiency of two training techniques as aids to learning selected aspects of a sequentially ordered action such as that of rowing. Subjects in one group were trained with a conventional learning technique (CLT) while those in a second group were trained by an augmented feedback technique referred to as external feedback (EFB). Progress was recorded on learning curves. Rowing athletes with limited experience and psychophysiology students were used for the study. The tasks consisted of learning movement timing (rhythmicity of action and coordination of body parts) and movement intensity (force and electromyogram development), in four separate experiments. The learning curves for EFB subjects were found to have significantly and consistently higher slopes than those for CLT subjects. Optimal criteria were reached by EBF subjects, after a continuous increase in performance levels and a concomitant decrease in standard deviations evaluated from periodicity, movement accuracy and force. Subjects, who after 8 to 10 sessions of CLT learning had not reached optimal level, were exposed to EFB. Their performances then showed a marked improvement and attained the required criterion in 2 to 4 sessions. This further demonstrates the efficacy of EFB as compared with CLT, as an aid to learning a complex sensorimotor action. The efficacy of EFB as a learning technique is discussed in relation to the internal model of the task to be executed and to sensory motor control and motor programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号