首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper proposes a new robust tracking servo system for the optical disk recording system with feedforward controller based on the prediction of the tracking error. In optical recording systems, the feedback servo system must suppress the influence of force disturbance and parameter variation. To overcome this problem, this paper designs the robust feedback control system by using coprime factorization and disturbance observer. The detecting signal of the optical disk recording system is only a tracking error. Hence, the feedforward controller of the proposed tracking control system is constructed based on both the "zero-phase-error tracking" control theory and the prediction of the tracking error. The experimental results point out that the proposed tracking servo system has a quick and precise tracking response and keeps the residual tracking error below its tolerance.  相似文献   

2.
This paper proposes a new robust speed control to suppress vibration caused by angular transmission error of planetary gears. For this purpose, this paper first constructs a new numerical simulation model of angular transmission error of planetary gear, which is confirmed by experimental data from a robot arm. Next, in order to suppress the vibration caused by angular transmission error, we propose a robust speed control system based on disturbance observer and coprime factorization. Numerical simulation results show that the proposed system regulates the angular speed of motor satisfactorily, and it suppresses the vibration caused by angular transmission error  相似文献   

3.
4.
Robust speed control of IM with torque feedforward control   总被引:1,自引:0,他引:1  
The authors describe a digital signal processor-based (DSP-based) robust speed control for an induction motor (IM) with the load-torque observer and the torque feedforward control. In the proposed system, the load torque is estimated by the minimal-order state observer based on the torque component of a vector-controlled IM. Using the load-torque observer, a speed controller can be provided with a torque feedforward loop, thus realizing a robust speed control system. The control system is composed of a DSP-based controller, a voltage-fed pulsewidth modulated (PWM) transistor inverter and a 3.7 kW IM system. An eccentric load with an arm and a weight is coupled to the IM and it generates the sinusoidal gravitational fluctuating torque. Experimental results show robustness against disturbance torque and system parameter change  相似文献   

5.
This paper presents a sensorless speed regulation scheme for a permanent-magnet synchronous motor (PMSM) based solely on the motor line currents measurements. The proposed scheme combines an exact linearization-based controller with a nonlinear state observer which estimates the rotor position and speed. Moreover, the stability of the closed-loop system, including the observer, is demonstrated through Lyapunov stability theory. The proposed observer has the advantage of being insensitive to rotation direction. It is shown how a singularity at zero velocity appears in the scheme and how it can be avoided by switching smoothly from the observer-based closed-loop control to an open-loop control at low velocity. The system performance is tested with an experimental setup consisting of a PMSM servo drive and a digital-signal-processor-based controller for both unidirectional and bidirectional speed regulation  相似文献   

6.
The application of vector control techniques in AC motor drives demands accurate position and velocity feedback information for the current control and servo control loops. The authors describe a speed observer system suitable for use with permanent magnet synchronous motors as a software transducer. The observer is developed from the dq model of the machine. Design considerations for the observer are discussed. The nonlinearities in the machine model present a problem to the observer design, so a state detection technique is used to achieve global stability and consistent convergence of the observer system. The simulations show that the performance of the observer is robust against noise and parameter uncertainties  相似文献   

7.
Generally, a speed servo system of a vector-controlled induction motor has limitations of motor voltage and current. When the speed servo system has a large torque reference, the output of its PI controller is often saturated. In this case, the conventional servo system stops the integral calculation of its PI controller. However, this system often has a large overshoot and/or an oscillated response caused by both a windup phenomenon and phase error on the vector control condition. This paper proposes a new speed servo system considering voltage saturation for the vector-controlled induction motor. The proposed control method compensates the phase error on vector control condition quickly, and always keeps the vector control condition. The experimental results show that the proposed system well regulates the motor speed and the secondary magnetic flux for a large torque reference without a windup phenomenon.  相似文献   

8.
为了满足2 m望远镜系统中消旋K镜伺服系统的速度控制性能,提出一种基于控制律参数自适应的自抗扰控制新方法。首先,基于速度回路被控对象,设计了二阶线性扩张状态观测器,以实现对扰动的实时观测;然后,为了提高速度环动态和稳态性能,采用回归分析方法,设计了控制律参数基于输入速度变化而自适应调整的比例控制器;最后,搭建了消旋K镜伺服控制实验系统,在速度阶跃信号激励下开展实验研究。结果显示:与传统PI和自抗扰控制器相比,系统以0.001()/s速度运行时,稳定时间从7.3 s、3.2 s减少至0.9 s;以10()/s速度运行时,系统超调量从8%、62%降低至无超调;在中低频段的扰动抑制能力最大提高了23 dB,性能得到了提高,可满足K镜伺服系统高精度的速度控制性能要求。  相似文献   

9.
The adaptive robust positioning control for a linear permanent magnet synchronous motor drive based on adapted inverse model and robust disturbance observer is studied in this paper. First, a model following two-degrees-of-freedom controller consisting of a command feedforward controller (FFC) and a feedback controller (FBC) is developed. According to the estimated motor drive dynamic model and the given position tracking response, the inner speed controller is first designed. Then, the transfer function of FFC is found based on the inverse model of inner speed closed-loop and the chosen reference model. The practically unrealizable problem possessed by traditional feedforward control is avoided by the proposed FFC. As to the FBC, it is quantitatively designed using reduced plant model to meet the specified load force regulation control specifications. In dealing with the robust control, a disturbance observer based robust control scheme and a parameter identifier are developed. The key parameters in the robust control scheme are designed considering the effect of system dead-time. The identification mechanism is devised to obtain the parameter uncertainties from the observed disturbance signal. Then by online adapting the parameters set in the FFC according to the identified parameters, the nonideal disturbance observer based robust control can be corrected to yield very close model following position tracking control. Meanwhile, the regulation control performance is also further improved by the robust control. In the proposed identification scheme, the effect of a nonideal differentiator in the accuracy of identification results is taken into account, and the compromise between performance, stability, and control effort limit is also considered in the whole proposed control scheme.  相似文献   

10.
A new motor speed estimator using Kalman filter in low-speed range   总被引:2,自引:0,他引:2  
In this paper, a new machine drive technique using novel estimation strategy for the very low-speed operation to estimate both the instantaneous speed and disturbance load torque is proposed. In the proposed algorithm, a Kalman filter is incorporated to estimate both the motor speed and the disturbance torque. The Kalman filter is an optimal state estimator and is usually applied to a dynamic system that involves a random noise environment. The effects of parameter variations are discussed, and it is verified that the system is stable to the modeling error. Experimental results confirm the validity of the proposed estimation technique  相似文献   

11.
建立了一种滑模速度观测器,用于电机转速的精确观测。该观测器充分利用电机状态方程具有的结构特点,设计出简单有效的速度估算方法,在转子磁链的估算中无须用到转子时间常数和转速等信息,提高了观测器对于参数误差的鲁棒性。将所建立的观测器和空间电压矢量脉宽调制技术(SVPWM)结合对电机进行控制,进一步提高了系统的调速性能。仿真结果验证了基于滑模控制理论的异步电机无速度传感器直接转矩控制系统的可行性以及对参数误差的鲁棒性。  相似文献   

12.
An improved sensorless vector-control method for an induction motor drive   总被引:1,自引:0,他引:1  
In the present paper, a new improved sensorless vector-control method for an induction motor drive is presented. The proposed method is based on an improved closed-loop stator-flux estimator, based on the dynamic model of the asynchronous motor, which achieves precise stator-flux estimation over a wide area of operation. This new stator-flux estimator ensures stability of the overall control scheme in a very-wide-speed operation area, as it will be shown in this paper. The rotor-speed-estimation method is based on an observer based on the model reference adaptive systems (MRAS) theory. The control scheme is based on a stator-flux-oriented direct vector-control method, where both flux and speed controllers are optimal tuned. In addition, implementation of the proposed method is based on a simplified algorithm capable of running in a low-cost microcontroller, which is discussed in detail. Also, the motor-drive system, including the stator-flux estimator, the speed estimator, and the control logic are simulated and some characteristic simulation results are presented. These results reveal that the proposed method is able to obtain precise flux and speed control over a wide operation area, including very low operating frequencies.  相似文献   

13.
In the present paper an approach is presented to the speed control of permanent magnet synchronous motors without mechanical transducers. The rotor position, which is an essential component of any vector control scheme, is calculated through the instantaneous stator flux position and an estimated value of the load angle. A closed-loop state observer is implemented to compute the speed feedback signal. Experimental results on a laboratory tested motor drive are presented to validate the proposed procedure  相似文献   

14.
The performance of vector-controlled sensorless induction motor drives is generally poor at very low speeds, especially at zero speed due to offset and drift components in the acquired feedback signals, and the increased sensitivity of dynamic performance to model parameter mismatch resulting especially from stator resistance variations. The speed estimation is adversely affected by stator resistance variations due to temperature and frequency changes. This is particularly significant at very low speeds where the calculated flux deviates from its set values. Therefore, it is necessary to compensate for the parameter variation in sensorless induction motor drives, particularly at very low speeds. This paper presents a novel method of estimating both the shaft speed and stator resistance of an induction motor. In this novel scheme, an adaptive pseudoreduced-order flux observer (APFO) is developed. In comparison to the adaptive full-order flux observer (AFFO), the proposed method consumes less computational time, and provides a better stator resistance estimation dynamic performance. Both simulation and experimental results confirm the superiority of the proposed APFO scheme for a wide range of resistance variations from 0 to 100%.  相似文献   

15.
叶佩芸  简磊  王皓民  高登 《电子测试》2020,(5):40-44,21
为改善智能车驱动电机调速与舵机转向的协调性,简化调参适配步骤,提出了基于MK60FN1(MK60)芯片的驱动与转向协同控制的模糊自适应控制方案。MK60计算出摄像头拍摄图像中车体与车道中线的位置偏差和角度偏差,根据位置偏差与舵机角度、角度偏差与测量到的车速,采用局部参数优化理论设计模糊自适应控制算法实时调整驱动电机和舵机的可调增益实现协同控制。与驱动、转向分开独立控制的策略相比较,本方案减小了稳态误差,智能车能够更快完成自主循迹,稳定性更好。  相似文献   

16.
The study develops a design of an integrated new speed-sensorless approach that involves a torque observer and an adaptive speed controller for a brushless dc motor (BLDCM). The system is based on the vector control drive strategy. The speed-sensorless approach first employs a load observer to estimate the disturbed load torque, and then the estimated load torque is substituted into the mechanical dynamic equation to determine the rotor speed, and thus develop a speed-sensorless algorithm. Additionally, the mechanical rotor inertia constant and the friction coefficient, which are the inputs of the load observer, are estimated using the recursive least-square rule. Therefore, the proposed speed-sensorless approach is unaffected by the time-variant motor parameters nor is affected by the integrator drift problem. It also has a simpler computing algorithm than the extended Kalman filter for estimating the speed. The modified model reference adaptive system algorithm, an adaptive control algorithm, is adopted as a speed controller of the BLDCM to improve the performance of the speed-sensorless approach. Simulation and experimental results confirm that the performance of the design of a new integrated speed-sensorless approach and the adaptive speed controller is good.  相似文献   

17.
For a high-performance servo drive system, it is important to estimate and control the motor speed precisely over a wide-speed range. Therefore, the disturbance-rejection ability and the robustness to variations of the mechanical parameters such as inertia should be considered. This paper shows that the adaptive state estimator and self-tuning regulator based on the recursive extended least squares (RELS) parameter identification method can achieve high-performance speed control over a wide-speed range. The RELS method identifies the variations of mechanical parameters, and the estimated mechanical parameters are used to replace the role of manual tuning by adjusting the gain of the speed controller automatically for good dynamic response. Also, these estimated parameters are used to adapt the Kalman filter, which is an optimal state estimator, to provide good estimation performance for the rotor speed, rotor position and disturbance torque even in a noisy environment. Simulation and experimental results show an improved speed control performance in the wide-speed range  相似文献   

18.
In this paper, a sliding-mode speed controller based on a new switching surface is proposed for induction motor systems. With this variable structure control switching surface, the exponential stability is guaranteed for the speed servo control and insensitivity to uncertainties and disturbances are obtained as well. Moreover, an adaptive variable structure speed control is studied to relax the need for the bound of disturbance in variable structure control. The insensitivity or robustness of the proposed method for general speed servo systems is maintained, and the dynamic performances are improved as well. Finally, the validity of proposed scheme is demonstrated by computer simulations and experimentations  相似文献   

19.
A fuzzy two-degrees-of-freedom (2-DOF) controller and its application to the speed control of an induction motor drive are presented in this paper. The proposed controller is composed of two fuzzy controllers to obtain good tracking and regulating responses. Unlike the conventional fuzzy controller, the error between the outputs of a reference model and the controlled drive is used to drive the proposed fuzzy controller. The drive rotor speed response can closely follow the trajectory produced by the reference model, and good load speed regulating response can also be obtained simultaneously owing to the possession of two-degrees-of-freedom in structure. Moreover, these performances are rather insensitive to the operating condition changes. The dynamic signal analysis as well as the construction of fuzzy control algorithms are described in detail. Some simulated and measured results are provided to demonstrate the effectiveness of the proposed fuzzy controller  相似文献   

20.
李家荣 《变频器世界》2009,(1):48-50,95
提出了一种速度自适应的转子磁链闭环观测器,并应用于矢量控制系统中,以取代传统的纯积分器。经过理论证明,该系统是超稳定系统。针对1.1kW感应电机,采用MATLAB/SIMULINK仿真软件对系统进行仿真,仿真结果表明该方案对电机参数变化的鲁棒性较好,磁链观测精度高。同时,基于磁链状态观测器设计的速度辨识方案收敛速度快.精度高,尤其是在较低转速下仍能保持很高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号