首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel class of near‐infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low‐dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage‐specific drug development.  相似文献   

2.
As selenocysteine (Sec) carries out the majority of the functions of the various Se‐containing species in vivo, it is of high importance to develop reliable and rapid assays with biocompatibility to detect Sec. Herein, an NIR fluorescent turn‐on probe for highly selective detection of selenol was designed and synthesized. The probe exhibits large turn‐on signal upon treatment with selenocysteine (R‐SeH), and it was further demonstrated that the new NIR fluorescent probe can be employed to image selenol in living animals.  相似文献   

3.
Bladder cancer (BC) is a prevalent disease with high morbidity and mortality; however, in vivo optical imaging of BC remains challenging because of the lack of cancer‐specific optical agents with high renal clearance. Herein, a macromolecular reporter (CyP1) was synthesized for real‐time near‐infrared fluorescence (NIRF) imaging and urinalysis of BC in living mice. Because of the high renal clearance (ca. 94 % of the injection dosage at 24 h post‐injection) and its cancer biomarker (APN=aminopeptidase N) specificity, CyP1 can be efficiently transported to the bladder and specially turn on its NIRF signal to report the detection of BC in living mice. Moreover, CyP1 can be used for optical urinalysis, permitting the ex vivo tracking of tumor progression for therapeutic evaluation and easy translation of CyP2 as an in vitro diagnostic assay. This study not only provides new opportunities for non‐invasive diagnosis of BC, but also reveals useful guidelines for the development of molecular reporters for the detection of bladder diseases.  相似文献   

4.
5.
Small‐molecule organic fluorophores spectrally active in the 800–950 nm region are sought‐after for their broad potential in biomedical and material applications. We have developed a new family of brightly fluorescent dyes ( ECX ) to meet this challenge. ECX dyes are transparent to the visible region, while strongly absorbing in the NIR region at approximately 880 nm. They emit at around 915 nm with a fluorescence quantum yield up to 13.3 %. ECX dyes exhibit high chemostability, high photostability, and low tendency to aggregate. Other merits of ECX dyes include low degree of solvatochromism and facile post‐synthetic derivatization. ECX dyes potentially make available the 800–950 nm region for spectroscopic and microscopic applications and are also expected to find broad material applications.  相似文献   

6.
We present the synthesis and photophysical characterisation of a series of structurally diverse, fluorescent 2,6,8‐trisubstituted 3‐hydroxychromone derivatives with high fluorescence quantum yields and molar extinction coefficients. Two of these derivatives ( 9 and 10 a ) have been studied as fluorophores for cellular imaging in HeLa cells and show excellent permeability and promising fluorescence properties in a cellular environment. In addition, we have demonstrated by photophysical characterisation of 3‐isobutyroxychromone derivatives that esterification of the 3‐hydroxyl group results in acceptable and useful fluorescence properties.  相似文献   

7.
8.
9.
Fluorescence anisotropy in the near‐infrared (NIR) spectral range is challenging because of the lack of appropriate NIR fluorescent labels. We have evaluated polymethine fluorescent dyes to identify a leading candidate for NIR anisotropy applications. The NIR dye LS601 demonstrated low fluorescence anisotropy values (r) as a result of its relatively long fluorescent lifetime 1.3 ns. The r value of LS601 unbound and coupled to biological macromolecules was found to have a sufficient dynamic range from 0.24 to 0.37, demonstrating the feasibility of fluorescence anisotropy in the NIR. The viability of fluorescence anisotropy using a NIR label was demonstrated by characterization of dye–protein conjugates. These results open the door to a number of applications in drug discovery, fluorescence anisotropy imaging and contrast agent development.  相似文献   

10.
11.
Colorless 1,3‐bis(dicyanomethylidene)indan is an organic acid (pKa≈3.0) that turns blue in polar media owing to self‐deprotonation. Moreover, its colored conjugate base shows potential as a minimal anionic polymethine dye for probing biomolecules in cells and in vivo through noncovalent complexation and near‐infrared fluorescence signaling.  相似文献   

12.
Bright fluorophores in the near‐infrared and shortwave infrared (SWIR) regions of the electromagnetic spectrum are essential for optical imaging in vivo. In this work, we utilized a 7‐dimethylamino flavylium heterocycle to construct a panel of novel red‐shifted polymethine dyes, with emission wavelengths from 680 to 1045 nm. Photophysical characterization revealed that the 1‐ and 3‐methine dyes display enhanced photostability and the 5‐ and 7‐methine dyes exhibit exceptional brightness for their respective spectral regions. A micelle formulation of the 7‐methine facilitated SWIR imaging in mice. This report presents the first polymethine dye designed and synthesized for SWIR in vivo imaging.  相似文献   

13.
14.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

15.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

16.
NIRer there : Pyrrolopyrrole cyanine (PPCys) dyes, a new class of near‐infrared (NIR) fluorophores, are obtained by condensation of heteroarylacetonitrile and diketopyrrolopyrrole compounds (see picture). Complexation with BF2 or BPh2 yields strongly fluorescent, photostable NIR dyes that show high absorption cross‐sections and fluorescence quantum yields. Furthermore, alteration of the heterocycle can tune the main absorption between λ = 684 and 864 nm.

  相似文献   


17.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

18.
Early detection of skin diseases is imperative for their effective treatment. However, fluorescence molecular probes that allow this are rare. The first activatable near‐infrared (NIR) fluorescent molecular probe is reported for sensitive imaging of keloid cells, skin cells from abnormal scar fibrous lesions. As keloid cells have high expression levels of fibroblast activation protein‐alpha (FAPα), the probe (FNP1) is designed to have a caged NIR dye and a FAPα‐cleavable peptide substrate linked by a self‐immolative segment. FNP1 can quickly and specifically turn on its fluorescence at 710 nm by 45‐fold in the presence of FAPα, allowing it to effectively recognize keloid cells from normal skin cells. Integration of FNP1 with a simple microneedle‐assisted topical application enables sensitive detection of keloid cells in metabolically‐active human skin tissue with a theoretical limit of detection down to 20 000 cells.  相似文献   

19.
20.
There is a persistent need for small‐molecule fluorescent labels optimized for single‐molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red‐shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed “DCDHF” fluorophores, for use in live‐cell imaging based on the push–pull design: an amine donor group and a 2‐dicyanomethylene‐3‐cyano‐2,5‐dihydrofuran (DCDHF) acceptor group, separated by a π‐rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red‐emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low‐intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small‐molecule fluorophores, which are needed for super‐resolution imaging schemes that require active control (here turning‐on) of single‐molecule emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号