首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
<正>水是人类赖以生存的基础。水在地幔和地表间的交换,是影响地球的气候、宜居性、化学演化、物理性质和动力学过程等的关键因素之一。与地表液态的水不同,地幔中的水主要以OH形式赋存在名义上无水矿物(nominally anhydrous minerals–NAMs,即理想化学式中不含H的矿物,如橄榄石、辉石等)的晶体结构中,构成了所谓的结构水。虽然含量很低(ppm级别),结构水的存在会显著影响矿物和岩石的多种物理  相似文献   

2.
<正>"水"在地幔的矿物中主要以晶格缺陷中的结构水形式存在,尽管其含量可能只有"10-6"的量级,但是这些微量的结构水会强烈的影响深部地幔矿物与岩石的化学物理性质,如矿物结构、岩石应变强度、部分熔融温度等,进而影响地幔的动力学性质和地球物理特征。大洋板块俯冲是"水"进入深部地幔的重要途径,各种高压、超高压含水相矿物是俯冲过程中"水"进入地幔的重要载体。因此,合成与研究超高压含水相硅酸盐矿物及其相变过程一直是实验岩石学的热点。  相似文献   

3.
水在地球上地幔的地球动力学过程中起着重要的作用,例如,氢(正如水)能影响部分熔融产生的岩浆的数量和组成,而微量氢(~0.001wt%的水)可使上地幔的主要矿物—橄榄石弱化。氢离子的适移可能是造成软流圈异常高的电导率的主要原因,氢在地幔过程中的重要性必然取决于无水橄榄石中所储存的氢或水的数量以及氢在橄榄石晶格中所处的位置。本文报道了橄榄石单晶的水热实验结果,该实验表明,在1573K和50-300MP  相似文献   

4.
地幔中水的赋存状态的研究进展   总被引:1,自引:2,他引:1  
地幔水不仅对地球物理场的性质有重要影响,而且对地球化学动力学,地幔横向不均一性、地幔对流、低速层、板块俯冲、相平衡、熔融行为、深部地质灾害以及成矿作用等都具有重要意义,因此,地幔水的研究早已引起人们的重视。为了探讨水在地幔过程中的作用,必须搞清楚水的赋存状态。研究表明,地幔中水的储存形式主要有三种:以OH形式储存的矿物中,以自由相形式存在以及溶解在熔体中,本文对地幔中水的赋存状态研究进展作了综述,  相似文献   

5.
上地幔中水的含量、赋存状态、运移途径和演化方式是具有重要科学意义的地球化学问题 ,多年来一直是地球科学的研究前沿和热点。常见的研究方法有 :(1)岩石学相平衡实验 ;(2 )流体包裹体 ;(3)稳定同位素。含羟基矿物的产出是地幔中存在水的直接证据。 2 0世纪 90年代以来 ,对地球深部物质 (主要是各种地幔包体 )的研究发现 ,几乎所有名义上的无水矿物 (nominallyanhydrousminerals ,简为NAMs)都含有微量的结构氢 ,以OH或H2 O的形式存在 ,其含量从n× 10 -6~n× 10 -3 。主要是通过分子光谱学的工作 ,…  相似文献   

6.
深部地球中的结构水以其独特的物理和化学性质影响着一系列地球化学和地球动力学过程。本文根据近年来地球内部含水性研究的进展,对地幔的储水能力进行估算,得出上地幔平均含水0.03%,其储水能力约为海洋水的0.12倍。水在地幔过渡带矿物中的溶解度较高(约1.53%),使得地幔过渡带储水能力约为海洋水的4~5倍,下地幔矿物的含水性研究目前还存在很大的争议,高温高压水溶性实验、理论计算以及地球物理方法等均不能对其进行很好的限制。现阶段已有的研究数据表明,下地幔矿物的含水量相对较低(约0.13%),但由于下地幔庞大的体积和质量,使得其储水能力是海洋水的2~3倍,整个地幔平均含水约0.26%,其储水能力约为海洋水的6~8倍。为了估算整个地球内部各圈层的储水能力,本文基于Murakami关于地球起源于碳质球粒陨石,其含水量约2%的结论,估算得出地核的储水能力约为海洋水的76.8倍,进而推断地核中可能含有0.6%左右的氢元素。  相似文献   

7.
氢——地球深部流体的重要源泉   总被引:17,自引:7,他引:17  
陈丰 《地学前缘》1996,3(3):72-79
介绍了近年来金刚石包裹体中流体研究结果,特别是分子氢和羟基的发现。基于地幔中氢的发现,论证了氢在地球内部的赋存形式。地核和地幔中有氢化物存在得到高压低温实验、地球物理和天文物理测定的支持。从而提出,氢是地幔羽中的原始热物质。核幔边界或地幔中氢化物释放出的氢,发生化学反应,形成地幔流体,推动地球演化。地幔羽应称为氢羽。  相似文献   

8.
深部地球中水的分布和循环   总被引:2,自引:1,他引:1  
深部地球中的主要物相(橄榄石、辉石、石榴石等及其高压相变产物)是理想化学式中不含H的“名义上无水矿物”,以缺陷形式存在于它们结构中的OH/H2O(统称为结构水)的发现是近二十年来地球科学领域最重要的进展之一。从天然样品的观察和高温高压实验结果来看,深部地球矿物中普遍含有结构水,其总量可能远远超过了水圈。水在深部地球不同层圈中的分布可能具有时间上和空间上的不均一性。在板块俯冲过程中,即使温压条件超过了含水矿物的稳定范围,名义上的无水矿物(如石榴石、辉石等)也可以携带大量的水(质量分数至少数百10-6)进入深部地球,构成了壳幔之间水循环的重要途径。  相似文献   

9.
深源巨晶辉石中“水”的红外光谱研究   总被引:1,自引:0,他引:1  
深源巨晶辉石中“水”的红外光谱研究彭文世张倩(中国科学院广州地球化学研究所,广州510640)关键词巨晶辉石结构羟基红外光谱深源地幔岩含水已被许多实验所证实。地幔矿物中少量的水对矿物的诸多性质和许多地幔地质过程的发生和发展,都起着极其重要的作用。近些...  相似文献   

10.
名义上无水矿物(NAMs)是深部地球的主要物相,是构成深部地球最主要的水储库。过去的几十年里,人们对地球深部水的分布及其对矿物乃至岩石系统的宏观效应的认识取得了长足进展,但是对水效应微观机制的关注较为欠缺。分子光谱是联系固体宏观性质和微观过程的重要手段,而且原位高温分子光谱实验能够直接测量矿物在地球深部温度下的电子吸收、分子振动和转动。本文按照波谱频率的高低,主要介绍了原位高温分子光谱在研究名义上无水矿物中的应用:研究地幔的辐射传热,地球深部温度下NAMs中水的状态,以及地幔的热力学性质。旨在让更多的学者能够在分子级尺度上认识深部地球性质和动力学过程。  相似文献   

11.
地幔中水的存在形式和含水量   总被引:3,自引:0,他引:3  
水以含水变质矿物、无水硅酸盐矿物(橄榄石、辉石等)及其高压结构相(β橄榄石、γ橄榄石、钙钛矿相、方镁铁矿等)、高密度含水镁硅酸盐和熔体的形式存在于地幔各层圈中。根据各类玄武岩水含量推断出的上地幔源区的水含量,和由地幔岩主要矿物———橄榄石的水含量估算出的上地幔水含量(质量分数)很接近,在0.02%左右。以橄榄石和辉石高压相的水含量为依据,进行了过渡带和下地幔水含量的估算,其结果是:过渡带和下地幔上部的水含量(质量分数)为1.48%,下地幔下部水含量(质量分数)为0.21%。据此,计算出的地幔各层圈的总水量表明,地幔水的74%以上存在于过渡带和下地幔上部。将地幔总水量和现代海洋总水量之和作为地球总水量,计算出现代海洋总水量约占全球总水量(质量分数)的6.6%,这个结果与笔者根据地球的球粒陨石成分模型计算出的总水量(6%)十分接近。  相似文献   

12.
地幔转换带中的水及其地球动力学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
综述了近20年国际上地幔转换带中水的研究进展。前人研究表明,地球深部的水主要以OH-(hy-droxyl)形式存储在名义上无水矿物(NAMs)中。高温高压实验研究表明,地幔转换带中的主要矿物均具有较高的储水能力,且在转换带的温压条件下,其储水能力随着温度的升高而降低,其中瓦兹利石(β-Ol)和林伍德石(γ-Ol)的储水能力为2%~3%,超硅石榴子石(Mj)的储水能力为0.1%左右,据此估算地幔转换带的储水能力约为1.2%~1.91%,是地表水总量的3.9~6.2倍;而转换带除外的上地幔和下地幔主要矿物的含水量或储水能力均小于0.1%,因此与上、下地幔相比,地幔转换带可能是地幔的主要储水库。尽管地幔转换带具有较强的储水能力,但对地幔转换带的实际含水量还存在干、湿两方面的地质和地球物理证据和争议。地幔转换带中的水会对转换带中一系列的过程产生重要影响,当水含量增加时,橄榄石(Ol)向β-Ol、γ-Ol分解以及超硅石榴石的分解反应分别向低压、高压和低压方向迁移,从而由橄榄石向β-Ol和γ-Ol分解两个相变反应界定的转换带宽度也会增加;水还会使地幔深部的部分熔融温度降低,熔体的密度降低;同时,水的加入可以很好地解释地幔岩"pyrolite"模型在410km不连续面处产生的与地震波测量不相符突变,也可以解决全地幔对流模式所不能解释的地幔成分分层问题。因此,深入研究和探讨转换带中的水对地球深部动力学过程的影响,包括中国东部地区受太平洋板块深俯冲作用的影响,均具有重要的约束和研究意义。  相似文献   

13.
矿物岩石电导率实验研究对于认识地球内部的电导率分布和地球动力学具有重要的意义。本文于实验室中研究了一些典型地壳和地幔矿物、岩石的电导率,并将实验结果与野外电磁结果进行了对比。研究结果表明,含水矿物的脱水和存储于名义无水矿物中的水会显著提高岩石的电导率。含水矿物的脱水可能是导致地壳出现高导层的主要原因,而地幔的高导层则可能是由名义无水矿物中赋存的水所引起。实验室矿物、岩石电导率模型与野外大地电磁结果的对比,为研究地球内部的热状态和水含量的分布提供了重要依据。  相似文献   

14.
<正>地球表面存在大量的水。海洋中的水伴随俯冲带下沉,可由含水矿物作为载体被带入到地球内部。2014年,加拿大Pearson在Nature上撰文指出,在巴西Rio Aripuana河东部发现的金刚石包裹体中,发现了含水~1 wt.%的林伍德石。该项研究为地幔含水提供了有力证据。如果地幔含水,水的出现会影响地幔矿物的一系列物理性质,如密度、弹性模量、波速、电导率等(Mao et al.,2008b;Mao et al.,2010;Wang et al.,2006)。因  相似文献   

15.
大别山超高压硬玉石英岩中的水:来自红外光谱的证据   总被引:2,自引:0,他引:2  
为了探讨大别山“名义上无水矿物”(NAMs)中结构水的分布特征, 研究相关的流体活动、矿物变形以及板块俯冲和折返动力学过程提供重要的微观信息.对大别山双河和碧溪岭地区超高压硬玉石英岩中的石英、硬玉、石榴石和金红石进行了傅立叶变换红外光谱(FTIR)分析, 研究结果显示这些矿物都含有以OH-或者H2O形式存在的氢, 硬玉中结构水平均含量在1000×10-6左右; 石榴石结构水含量在(900~1600)×10-6之间, 各样品颗粒结构水的分布不均匀; 副矿物金红石结构水含量在2000×10-6以上, 而石英结构中基本不含或仅含微量水(< 4×10-6).双河和碧溪岭地区的硬玉石英岩全岩含水量分别为(490~600)×10-6和545×10-6, 不同地区同一种NAMs中结构水含量基本相同.表明在高压-超高压变质岩的形成过程中, 地壳或原岩中的水可以通过这些超高压变质岩中的NAMs携带到地球深部.   相似文献   

16.
<正>碳酸盐矿物,如CaCO3,MgCO3,MgCa(CO3)2等,是地壳岩石的重要组成部分。在板块运动中,碳酸盐矿物随着板块俯冲被带入地球内部。近期高温高压实验表明,这些碳酸盐矿物在俯冲板片相对较低的温度下稳定存在,并在下地幔温压条件下发生结构相变。即使少量碳出现在地球深内部,都将会改变地幔矿物的熔点,并使地球内部处于更加还原的状态(Dasgupta and Hirschmann,2010)。因此,研究这些碳酸  相似文献   

17.
氦(He)元素是地球上的稀有元素之一,宇宙中其含量仅次于氢,但由于其化学惰性不能像氢元素一样与其他元素反应生成稳定的化合物,因此只有少量的地球形成初期保留下来的原始氦气存在于大气中。然而,科学家们发现有氦气从地幔俯冲带喷发出来(比如洛杉矶金施,Newport-Inglewood断层带)。因此推测地幔中可能存在氦的化合物。尽管如此,科学工作者一直未发现含有He元素的矿物,甚至在地幔温度压力下也未合成相关的含有氦元素的化合物。  相似文献   

18.
碳酸盐熔体交代作用是指在地幔碳酸盐熔体与橄榄岩之间的相互作用,是改造地幔的重要方式之一.碳酸盐熔体交代会显著改变地幔橄榄岩的岩石学和地球化学特征.首先,碳酸盐熔体交代作用会改变地幔橄榄岩中的矿物组成和比例.尽管碳酸盐熔体与橄榄岩的反应结果受控于初始反应物成分和反应的温压条件,但多数反应会导致橄榄岩中辉石的比例增加,而且有时还会出现磷灰石、独居石等副矿物.另外,在有些受碳酸盐熔体交代显著的橄榄岩的矿物中不仅可发现大量CO2流体包裹体和碳酸盐熔体包裹体,也会出现特殊的反应边结构和熔体囊.其次,碳酸盐熔体在改造地幔橄榄岩过程中,会在地幔矿物中留下明显的地球化学指纹.在主量元素特征上,受到碳酸盐熔体交代的橄榄岩中的单斜辉石往往具有偏高的Mg#和Ca/Al比值(>5);而在微量元素组成特征上的变化更为显著,包括单斜辉石具有高的(La/Yb)N、Eu/Ti、Zr/Hf、Y/Ho比值,并显著亏损HFSE等.另外,值得注意的是,碳酸盐熔体与地幔橄榄岩反应的程度不同也会导致这些地球化学特征存在差异,因此在判别碳酸盐熔体交代作用时要采用岩石学和地球化学特征相结合,多方面对比分析.对于引起地幔碳酸盐熔体交代作用的交代介质来源的识别主要用Mg-Zn-Ca-Sr等多种同位素体系进行示踪研究,尤其是近年来微区Sr同位素分析方法的建立为地幔碳酸盐熔体交代作用研究提供了重要手段.   相似文献   

19.
水对地幔硅酸盐矿物的物理化学性质、运移迁徙以及热稳定性都有着显著的影响。研究水在地幔矿物中的赋存机制及地球深部的水循环过程,是当今世界矿物学与地球科学领域内的热点和重点之一,这对于我们了解地球深部的岩石矿物学与诸多地球动力学过程都有着深远的意义。首先俯冲板块中的蛇纹石(serpentine,含水量10%~13%)随着板块的向下运动,在高温高压下分解将产生Phase A(含水11.8%)、粒硅镁石(chondrodite,含水5.4%)和斜硅镁石(clinohumite,含水2.9%)[1-3]。这3种矿物为橄榄岩体系中重要的致密高含水硅酸镁(DHMS)成员,通过这些含水矿物作载体,俯冲板块中的水将有可能进入上地幔深部乃至转换带中。而地幔转换带作为地幔物理化学性质剧烈变化的区域(从410~660 km),对地球的岩石圈层结构以及地球动力学都有着特殊的意义[4-6],其贡献主要来自于橄榄石的高压相瓦兹利石(Wadsleyite)和林伍德石(ringwoodite)。这两种矿物占据了地幔转换带体积的60%~70%,为名义上无水矿物(NAMS),但是通过羟基取代(Mg2+=2H+)的方式,可使得其结晶水含量高达3%左右[7-9]。如果瓦兹利石和林伍德石的结晶水含量达到了饱和,将使得地幔转换带的储水能力为地球表面水总量的7~8倍,因此转换带是地球深部最重要的储水层。最近,加拿大Pearson研究小组通过研究来自巴西Juina的金刚石包裹体,发现来自地幔转换带的天然林伍德石的含水量约为1%[10],这与我们通过高温高压实验数据[11],模拟出的地幔转换带中的含水量是一致的。对含水矿物晶体结构的分析将有助于我们从微观机制上认识水(羟基)在硅酸盐矿物中的赋存机制。关于晶体结构方面的工作,我们将介绍以下两个方面:1)通过不同含水量的瓦兹利石和林伍德石晶体结构分析,深入探讨氢离子在名义无水矿物中的取代机理[11-13];2)通过比较合成的和天然的粒硅镁石和斜硅镁石样品,系统分析氟、钛、铁元素对其晶体结构的影响[14-15]。除了探讨晶体结构之外,我们还将通过高温高压实验数据,系统阐述水对上述硅酸盐矿物的热力学状态方程的影响[11-16]。结晶水的进入将会使得矿物的热膨胀系数与压变系数明显增加,这将对上地幔及转换带的动力学产生深远影响。  相似文献   

20.
水对名义无水矿物变形的影响   总被引:1,自引:0,他引:1  
在固体地球中,水虽微量,但对众多地质过程(例如,岩石部分熔融与火山喷发、地震活动等)和岩石的物理化学性质(例如,电导率、滞弹性、地震波性质、相变动力学等)影响重大。更为重要的是,水能通过影响矿物的变形机制来控制岩石的流变强度,进而制约着地球动力学的过程。名义无水矿物(NAMs:Nominal anhydrous minerals)即为分子式中不含氢的矿物,其晶格的容水量远小于正常含水矿物(如,角闪石,蛇纹石等)的容水量,但由于NAMs在固体地球中体积比例甚大,仅上地幔的橄榄石中所能溶解的水可能比全部地表水还多。因此了解水对NAMs(尤其是分别作为地壳和上地幔主要组成矿物的石英和橄榄石)变形的影响对于精确地构建岩石圈强度剖面和深刻理解构造地质学与地球动力学过程至关重要。本文将系统地回顾水对NAMs变形的影响,首先通过回顾水在固体地球内部的存在形式提出了NAMs是固体地球中的重要水库,接着阐述了NAMs中水的存在形式、溶解机制、溶解度影响因素及扩散动力学,最后着重论证了水致弱化在石英和富镁石榴石中最强,然后依次是单斜辉石、长石、橄榄石,瓦德利石和林伍徳石。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号