首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以废渣磷石膏作为掺合料替代部分水泥、添加聚羧酸减水剂,制备了胶结材和混凝土。结果表明:掺入5%的磷石膏的水泥胶砂强度均满足P.O 42.5水泥的强度要求,掺入10%~15%的磷石膏的水泥胶砂强度能达到P.O 32.5水泥的强度要求,胶砂试块的凝结时间及安定性均合格;采用磷石膏替代小于等于25%的水泥、添加2.0%~2.3%的聚羧酸减水剂,可配制C30混凝土,其抗渗性能达到P12抗渗等级要求。对制备的不同龄期胶砂及混凝土试样进行XRD分析可知,磷石膏-水泥复合胶凝材料的水化产物主要是CS-H凝胶和钙矾石(AFt);磷石膏中的Ca SO4·2H2O可与Ca O、Al2O3反应,生成AFt,增加硬化浆体的强度。且磷石膏颗粒细小,能起到微集料作用,增加硬化浆体的致密性。  相似文献   

2.
磷石膏属于一种固体废渣,占用土地资源,污染环境。开发磷石膏充填胶凝材料,治理采空区可达到“一废治两害”的目标。为此,以磷石膏、矿渣、生石灰、芒硝、氢氧化钠为试验原料制备磷石膏基胶凝材料,通过单因素试验分析各材料掺量与磷石膏基充填胶凝材料抗压强度的关系,通过多因素试验分析各材料掺量的最优配比。试验结果表明:试块抗压强度与氢氧化钠含量呈正比;随着生石灰含量的增加,试块抗压强度先增长后降低,当生石灰含量达到6%时,试块抗压强度最大;芒硝的含量不利于试块晚期强度的增长,当芒硝含量达到1.5%时,试块早期抗压强度较大,晚期强度较为理想;磷石膏不利于试块强度的发展。各材料掺量对试块抗压强度影响的强弱程度依次为氢氧化钠>生石灰>芒硝>磷石膏。当生石灰含量6%、氢氧化钠含量2.5%、芒硝含量1%、磷石膏含量35%,试块抗压强度最高,3,7,28 d抗压强度分别为1.86,2.35,4.49 MPa。结果可为类似磷石膏充填胶凝材料制备提供参考。  相似文献   

3.
比较NaOH、NaOH+Na2SiO3溶液、NaOH+纳米二氧化硅溶液3种碱激发剂对碱活化磷渣基复合胶凝材料(AAPGF)性能的影响规律。采用扫描电子显微镜(SEM)、X射线衍射(XRD)仪和红外光谱测试(FTIR)等手段,研究了AAPGF的流动性、凝结时间、力学性能、水化产物形貌等变化。结果表明,不同的激发剂对胶凝材料的性能产生不同的影响。NaOH溶液作为激发剂,胶凝材料凝结时间最长。NaOH+Na2SO3溶液作为激发剂时,胶凝材料能够获得较高的强度,28 d抗压强度达到72.7 MPa。NaOH+纳米二氧化硅溶液作激发剂时,抗折强度最高,28 d抗折强度可达12.11 MPa。在3种激发剂激发下的水化产物均以水化硅酸钙(C-S-H)、水化硅铝酸钙(C-A-S-H)为主。NaOH+纳米二氧化硅(NS)溶液中NS不仅能够提供活性物质,而且能够产生微填充效应。  相似文献   

4.
针对金川矿山充填采用水泥作为胶凝材料成本较高的问题,利用当地固体废弃物资源开发矿用新型胶凝材料.首先对试验材料进行物化分析,开展了磷石膏—矿渣复合胶凝材料强度正交试验,并在此基础上进行磷石膏—矿渣复合胶凝材料配比优化试验确定最优配比;然后对磷石膏—矿渣复合胶凝材料强度的影响因素进行了分析,利用扫描电镜观察了各龄期水化产...  相似文献   

5.
以未经处理的原状磷石膏为主要原料制备磷石膏基胶凝材料,通过微观分析及测试其力学性能,考察石灰掺量,水泥、粉煤灰比例及养护制度对磷石膏基胶凝材料力学性能的影响。结果表明:(1)该体系最优配比为磷石膏60%,水泥与粉煤灰比例为1∶4,生石灰4%,水料比0.25,减水剂0.2%;(2)该胶凝体系中磷石膏掺量超过60%后,抗压、抗折强度急剧下降;(3)蒸养制度对磷石膏基胶凝材料性能影响较大,在75℃下蒸汽养护10 h,基体强度增长较快且耐水性较高,28 d抗压强度为30.1 MPa,吸水率为8.5%,软化系数达到0.82。  相似文献   

6.
以磷渣(PS)、高炉矿渣(BFS)、复合碱激发剂(复配钠盐(CN)+氢氧化钙(CH))制备的磷渣基胶凝材料作为砷钙渣(AL)固化剂,研究其固化量对固化过程中材料性能和微观结构的影响,采用X射线衍射仪、扫描电镜和傅里叶红外光谱仪对固化体进行表征。结果表明,PS、BFS、CH质量比为70∶20∶4,CN添加量固定为PS、BFS和CH总质量的2%,AL固化量(质量分数)分别为5%、10%时,磷渣基胶凝材料抗压强度分别达67 MPa和78 MPa,较无砷组(32 MPa)显著增强,且砷浸出质量浓度均低于1 mg/L。当AL固化量为40%时,固化体抗压强度为20MPa,砷浸出质量浓度为4.34 mg/L,低于GB 5085.3-2007《危险废物鉴别标准浸出毒性鉴别》的限制浓度5 mg/L,说明磷渣基胶凝材料对AL有较好的固化效果。表征分析结果表明,AL可改变磷渣基胶凝材料的水化产物,未添加AL时,材料水化产物主要为水化硅酸钙;添加AL后,主要水化产物为水化硅酸钙、水化铝硅酸钙、水化铝硅酸钠和钙矾石。AL经固化后,固化体中有Ca2As2O7<...  相似文献   

7.
纤维增韧补强磷石膏基胶凝材料   总被引:2,自引:0,他引:2  
在磷石膏-矿渣基胶凝材料中加入纤维对胶凝材料增韧补强.用不同龄期样品的抗冲击功、抗折强度、抗压强度、孔隙率和受压样品外貌及断口形貌分析等表征纤维对胶凝材料的增韧补强效果.结果表明:BF型化纤可显著对磷石膏基胶凝材料增韧,BM型玻纤可显著对磷石膏基胶凝材料补强.在20℃(湿度大于90%)条件下,BF型化纤掺量为0.7%时,样品28 d的抗冲击功和抗折强度分别较净浆提高了389.5%和50.4%;BM型玻纤掺量在1.0%时28d抗压强度较同龄期的净浆提高了10.4%;BF型化纤穿插于硬化体内部,具有桥联搭接作用;BM型玻纤降低孔隙率.  相似文献   

8.
本文针对性地探讨了碱激发剂掺量对尾矿-冶炼渣充填复合胶凝材料强度的影响。在强度试验的基础上,通过扫描电子显微镜、X射线衍射、红外光谱、X射线光电子能谱等一系列测试手段分析了在不同碱激发剂掺量下的材料结构和元素化学结合能变化,从微观上阐释了材料强度变化的原因。研究结果表明:添加碱激发剂有利于提高复合胶凝材料强度,碱激发剂的最佳掺量为3%。  相似文献   

9.
采用KAl(SO4)2·12H2O和Al2(SO4)3·18H2O为激发剂,研究硫酸盐激发剂对石膏复合胶凝材料(GCB)凝结时间、力学性能和耐水性的影响,用SEM和XRD分析硫酸盐在GCB中的作用及其影响机理。结果表明,GCB的主要水化产物是钙矾石和C-S-H凝胶,硫酸盐有利于钙矾石和C-S-H凝胶的生成。两种硫酸盐都能显著提高GCB的早期强度,改善其泌水和耐水性能;达到最佳掺量1%时,KAl(SO4)2·12H2O的激发效果更好,GCB试样7 d抗压强度为24.7 MPa,软化系数大于0.9。  相似文献   

10.
锂渣具有火山灰活性,可作为辅助性胶凝材料应用于水泥基材料中,但其较低的水化活 性导致材料的力学性能和耐久性能下降。 针对锂渣在复合胶凝材料中的低水化程度,本文采用 一种无机高分子聚合铝作为激发剂来提升锂渣的水化反应活性,通过测定材料的胶砂强度、化学 结合水量等宏观性能,并结合水化放热特性、水化产物矿物组成及背散射显微形貌等微观表征, 分析了聚合铝对锂渣-水泥复合胶凝材料水化特性的影响及作用机理。 结果表明:聚合铝的掺入 显著提高锂渣-水泥复合胶凝材料28d龄期的抗压强度和化学结合水含量,分别增长了26*8% 和5%;早期水化反应中,聚合铝的掺入加速了锂渣-水泥复合胶凝体系的矿物相溶解和晶体的生 长,增加了水化产物的成核总量,水化产物中出现了大量的钙矾石、水化铝酸钙、氢氧化钙及非晶 态水化凝胶;聚合铝的掺入促进了锂渣-水泥复合胶凝体系的水化和锂渣颗粒的溶解与侵蚀。  相似文献   

11.
为了提高钢渣和矿渣的高附加值利用率以及钢渣在胶凝材料中的掺量,研究了钢渣与矿渣掺量、质量比和胶凝活性激发方式对复合胶凝材料抗折、抗压强度的影响,并采用X射线衍射、扫描电镜和热重分析等检测手段探究了钢渣—矿渣复合胶凝材料的水化机理。结果表明:钢渣矿渣掺量为80%、钢渣矿渣质量比为5∶5、钢渣粉磨时间为80 min(比表面积为509 m2/kg)时,钢渣—矿渣复合胶凝材料的28 d抗折强度为7.3 MPa、抗压强度为31.3MPa;选取Na OH、Na2CO3、Na2SO4和水玻璃为激发剂对胶凝材料活性进行激发,只有水玻璃提高了复合胶凝材料的活性,且当水玻璃模数为2、Na2O当量为4%时,其28 d抗折强度为8.4 MPa、抗压强度为43.0 MPa。分析水玻璃激发胶凝材料的水化产物发现:其微观形貌紧实致密,生成的C—S—H凝胶、Ca(OH)2和Aft相互交织,提高了胶凝材料的强度。  相似文献   

12.
以鞍钢-0.088 mm热闷法钢渣和鞍钢高炉矿渣为胶凝材料的主要组分,以鞍钢0.088~19 mm热闷法钢渣为骨料,制备出了具有较高强度的人工鱼礁用钢渣混凝土。通过X射线衍射分析、场发射扫描电镜分析、差热分析和红外吸收光谱分析对胶凝材料的水化特性进行研究,结果表明:该胶凝材料在水化初期生成大量低碱度水化硅酸钙凝胶和少量钙矾石,水化硅酸钙凝胶是混凝土早期强度的主要来源;而随着水化进程的延续,水化硅酸钙凝胶的继续发展和不断增多、长大的钙矾石对体系空隙的充填则共同使混凝土的后期强度得到进一步的提高。  相似文献   

13.
以铁尾矿和铜矿渣为原料,成功制备了尾矿渣复合胶凝材料。通过分析球磨时间、胶砂比、料浆浓度、矿渣用量、碱激发剂、水泥熟料、养护条件与胶凝材料力学性能的关系,探讨矿渣胶凝体系制备过程影响因素,确定矿渣胶凝材料制备工艺条件。当矿渣胶凝体系配比为铜矿渣∶石灰∶石膏=80%∶4%∶16%、矿渣胶凝体系球磨时间25min,充填体中矿渣胶凝体系∶水泥熟料∶氢氧化钠∶铁尾矿=20%∶5%∶0.5%∶74.5%、料浆浓度为75%时为充填材料的最好配比,在此条件下,5%水泥填料,试块28d抗压强度为3.62MPa。试验中尾矿渣复合胶凝材料制备研究满足矿山充填胶凝材料的需求。  相似文献   

14.
为了促进固体废弃物的资源化利用,解决尾矿堆积带来的环境、安全问题,并提供相应的理论依据,以钼尾矿为主要原料制备复合胶凝材料,通过粒度分析、力学性能测试、X射线衍射(XRD)和扫描电镜 (SEM)等测试手段,研究了钼尾矿磨矿时间和掺量对胶凝材料性能的影响及复合胶凝材料的水化机理。结果表明:①当钼尾矿粉磨时间为80 min,比表面积为500 m2/kg,其28 d活性指数接近1.2;钼尾矿掺量为40% ,胶砂比为1∶3,水胶比为0.5时,所制备的复合胶凝材料胶砂块28 d抗压强度为52 MPa。②复合胶凝材料水化反应初期,主要生成水化硅酸钙和钙矾石,为胶砂块提供了早期强度,水化反应后期主要产物为C—S—H 凝胶、水化铝酸钙及钙矾石(AFt),尾矿残余颗粒及水化产物的凝聚效应为胶砂块强度提供了保障。  相似文献   

15.
以石膏、矿渣、生石灰为主要原料制备矿山充填复合胶凝材料,采用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)、X射线能谱仪(EDS)、傅立叶变换红外光谱仪(FT-IR)、同步热分析仪(DSC-TG)等微观分析手段探究复合胶凝材料水化产物的作用机理。研究表明:通过极差分析和方差分析获得复合胶凝材料最佳工艺参数为生石灰添加量20%、石膏添加量1.0%、胶砂质量比1∶6、料浆浓度72%。复合胶凝体系的水化产物以钙矾石(AFt)和C-S-H凝胶为主,在生石灰和石膏的协同激发作用下,矿渣中玻璃体网络结构逐渐解聚,伴随水化反应的进行,钙矾石和C-S-H凝胶的生成量不断增加,交错黏结填充于浆体孔隙中,将骨料紧密联结成整体,提高了浆体结构密实性,是充填体早期强度的主要来源。  相似文献   

16.
粒化高炉矿渣胶凝性能活化研究进展   总被引:2,自引:0,他引:2  
吴蓬  吕宪俊  胡术刚  张磊 《金属矿山》2012,41(10):157-161
通过分析粒化高炉矿渣的成分和结构特点,阐述了粒化高炉矿渣具有潜在胶凝活性的原因;从机械活化、化学活化两方面介绍了粒化高炉矿渣活化的研究进展,并总结了目前对粒化高炉矿渣水化机理的一些认识。  相似文献   

17.
郭斌  梁峰  吴凡  涂光富  高谦 《金属矿山》2020,48(11):8-13
针对高官营铁矿超细全尾砂,以唐山周边地区的水泥、石灰、脱硫石膏和矿渣为原料,开展了替代水泥的高强度低成本新型充填胶凝材料研究。采用正交试验设计进行了水泥、石灰和脱硫石膏胶凝材料胶结体强度试验。极差分析显示,新型胶凝材料胶结充填体7 d强度影响因素重要程度排序为水泥、石灰、脱硫石膏。充填体7 d强度优化配方为水泥3.5%、石灰2.5%、脱硫石膏17.5%,强度为2.79 MPa,约为32.5R水泥的5.3倍。胶结充填体28 d强度影响权重与7 d强度影响权重相反,28 d强度优化配方为水泥4.5%、石灰2.5%、脱硫石膏17.5%,强度为5.04 MPa,约为32.5R水泥的4.5倍。通过SEM电镜分析得出,新型胶结材料的主导水化产物为钙矾石和C—S—H凝胶,胶结充填体强度的提高是这两种水化产物不断形成与发育的结果。砂浆流变特性试验说明,砂浆浓度为68%的新型胶凝材料充填料浆达到了宾汉体流体状态,适合进行料浆管道输送。现场工业试验表明:胶砂比为1∶5、砂浆浓度为68%的新型胶凝材料充填体28 d强度为4.91 MPa,满足充填进路下部充填体28 d强度大于4 MPa的设计要求,与室内试验结果的误差为2.6%,说明室内试验得到的测试数据可靠度较高,并且在强度性能和接顶率方面较32.5R水泥效果更佳,为矿山进行安全高效充填作业提供了有力保障。  相似文献   

18.
郭斌  梁峰  吴凡  涂光富  高谦 《金属矿山》2019,48(11):8-13
针对高官营铁矿超细全尾砂,以唐山周边地区的水泥、石灰、脱硫石膏和矿渣为原料,开展了替代水泥的高强度低成本新型充填胶凝材料研究。采用正交试验设计进行了水泥、石灰和脱硫石膏胶凝材料胶结体强度试验。极差分析显示,新型胶凝材料胶结充填体7 d强度影响因素重要程度排序为水泥、石灰、脱硫石膏。充填体7 d强度优化配方为水泥3.5%、石灰2.5%、脱硫石膏17.5%,强度为2.79 MPa,约为32.5R水泥的5.3倍。胶结充填体28 d强度影响权重与7 d强度影响权重相反,28 d强度优化配方为水泥4.5%、石灰2.5%、脱硫石膏17.5%,强度为5.04 MPa,约为32.5R水泥的4.5倍。通过SEM电镜分析得出,新型胶结材料的主导水化产物为钙矾石和C-S-H凝胶,胶结充填体强度的提高是这两种水化产物不断形成与发育的结果。砂浆流变特性试验说明,砂浆浓度为68%的新型胶凝材料充填料浆达到了宾汉体流体状态,适合进行料浆管道输送。现场工业试验表明:胶砂比为1∶5、砂浆浓度为68%的新型胶凝材料充填体28 d强度为4.91 MPa,满足充填进路下部充填体28 d强度大于4 MPa的设计要求,与室内试验结果的误差为2.6%,说明室内试验得到的测试数据可靠度较高,并且在强度性能和接顶率方面较32.5R水泥效果更佳,为矿山进行安全高效充填作业提供了有力保障。  相似文献   

19.
为探索廉价适宜的充填材料,选用低值的黄土作为原材料制备胶结充填材料,通过改变多种因素,试验研究材料强度的变化规律。结果表明:黄土质胶结充填材料的强度受多因素控制,随着水泥掺量、质量浓度、粉煤灰掺量的增加,材料强度逐渐升高,但粉煤灰掺量存在极限值;随着风积砂掺量的升高,强度缓慢降低;对掺入石灰和石膏,强度响应不显著。材料强度对各因素敏感性不一,对质量浓度敏感性最强,对粉煤灰敏感性最弱。  相似文献   

20.
以废渣黄石膏10%、水泥90%、高效减水剂1.2%~2.0%为原料配制的胶结材胶砂,其抗压、抗折强度满足P.O42.5水泥的强度指标要求,其凝结时间及安定性合格;采用配比为黄石膏30%、水泥70%、高效减水剂1.2%~2.0%,可配制C30混凝土,其抗渗性能达到P12抗渗等级要求;对制备的不同龄期胶砂及混凝土试块进行XRD分析,结果表明:黄石膏-水泥复合胶凝材料的水化产物,主要是C-S-H凝胶、钙矾石及二水石膏。C-S-H凝胶、钙矾石及二水石膏相互胶结在一起,形成致密的硬化体,从而产生强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号